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A HYBRID METHODOLOGY FOR
DETECTING CARTOGRAPHICALLY SIGNIFICANT FEATURES USING

LANDSAT TM IMAGERY

1.0 INTRODUCTION

1.1 Purpose

The objective of this effort was to recommend a reliable method for detecting and
identifying cartographically significant changes using Landsat Thematic Mapper (TM)
imagery. In addition to being reliable, such a method should be as automatic and easy as
possible for a user to operate. The method must not only be able to detect changes of
interest but it must also ignore changes not of interest. Significant changes were defined
as new manmade features such as roads, bridges, and buildings; whereas, insignificant
changes were shifts in vegetation features.

1.2 Scope

A general Change Detection (CD) methodology was formulated as the result of direct
experience gained through numerous CD experiments, as well as a review of past efforts in
the remote sensing community. This methodology, which is is a hybrid mix of image
processing and pattern recognition techniques, attempts to combine various forms of
supporting and conflicting evidence for change into a resulting change map.

The methodology involves differencing registered multiband scene pairs that have
(optionally) undergone a spectral transformation, generating a mask by applying a
histogram-based threshold to the differenced image, and applying a classifier to the masked
multiband scene pairs. The result of differencing the registered scene pairs is used as
evidence for change. Following this, the result of subsequently differencing classification
maps is used as evidence for NO_CHANGE and effectively acts as a filter to the image-
differencing results.

A few specific implementations of the methodology were investigated through a laboratory
experiment conducted using the Land Analysis System (LAS) Software residing on the
US. Army Engineer Topographic Laboratories (ETL) Space Research Test Bed Facility
(SRTF) at Fort Belvoir, Virginia. Ultimately, an operational version of the methodology
must take the form of a streamlined software package easily invoked with minimal input by
an analyst. Although the details of the experiment as presented may seem to contradict this
goal, the author feels they are essential to document the specific nature of the algorithms
involved. One advantage of using LAS is that once a sequence of operations is found to be
useful for CD, it can be automated to a large degree by using the system's Procedure
Definition Files (PDF's) capability.

The most suitable CD methods, along with suggestions for further study, are discussed in
the concluding portions of this report. The appendices are used to extend some of the
technical ideas as well as to document the actual experimental results. Although the effort
was directed at Landsat TM, the proposed methodology could be applied to other
multispectral inage (MSI) data, such as SPOT Muitispectral and Aircraft Multispectral
Sensors. The methodology could also be extended to other feature categories.



2.0 CHANGE DETECTION METHODOLOGY

The proposed CD methodology involves a number of processing steps, most of which can
be automated. Five major tasks are involved: (1) Extracting registered scenes from source
multispectral imagery (MSI); (2) Generating spectrally transformed scenes; (3) Extracting
CD feature candidates; (4) Identifying CD feature candidates; and (5) Generating a CD
feature map. A diagram of the algorithm flow for these tasks is shown in Figure 1. This
section provides a detailed explanation of the processing steps necessary to implement thetasks.

2.1 Extracting a Registered Data Set

This first task is needed to define the regions of interest and to provide a registered data set.
At a minimum, image-to-image registration must be performed so that the pixels in the
scene of one date correspond to the same ground samples as the pixels in the scene of the
second date. For satellite multispectral imagery, such as Landsat TM and SPOT, this
process is generally straightforward, so long as the acquisition geometry is near-nadir. In
addition to off-nadir satellite imagery, the image-to-image registration of aircraft
multispectral imagery is generally quite difficult and involves modeling the sensor's
acquisition geometry, its scanning motion, and the platform's motion.

If there is a requirement to overlay the CD results onto a map, one must perform an image-
to-map transformation to one of the images. This can be done either before or after the CD
processing. However, compute time will usually be quicker if an image-to-image
registration is rst performed for the two scenes, followed by generating an image-to-map
transformation model. Rather than applying the transformation to the scenes, it is applied
later to the CD feature map that was generated in the same image space as the scene pairs.

Generally, registering Landsat TM scenes to other dates of Landsat TM or to maps at a
1:100,000 scale or smaller is not a problem. For scenes with fairly flat topography and
sufficient control, accurate registration at a 1:50,000 scale can often be accomplished.
Further discussion of registration issues is beyond the scope of this report. A number of
investigators have studied the problem (for example, see Welsh for one such study') Also,
a recent ETL study demonstrated the feasibility of generating 1:50,000-scale image maps
and evaluated the necessary processing steps using government software.2

2.2 Generating Spectrally Transformed Scenes

Although the differencing of registered scene pairs can be performed directly on the original
multiband data, such differencing involves more than one band. In the case of Landsat TM
imagery, there are 6 candidate bands (visible and near-infrared) some of which are highly
correlated.

1 Welsh, R. Jordan, T.R. and Ehlers M. "Comparative Evaluations of the Geodetic Accuracy and Cartographic
Potential of Landsat-4 and Landsat-5 Thematic Mapper Image Data", Photogrammetric Engineering and Remote
Sensing, Vol. 51, No.9 , Sept 1985: pp. 1249-1262.
2 Rand, Robert. Davis, Donald. and Anderson John. Multispectral Image Maps from Landsat Thematic Mapper

Data. Fort Belvoir, VA: U.S. Army Engineer Topographic Laboratories, in publication.
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Multispectral Source Imagery
Landsat Thematic Mapper (6 Visible and Near IR Bands), or
Spot Multispectral Imagery (3 Visible and Near IR Bands), or
Aircraft Multispectral Imagery (6-11 Visible and Near IR Bands).

Transform Generate Spectrally Transformed Imagery

Apply Tasselled Cap Brightress/Greeness,
Scene-Derived Brightness/Greeness, or
Some other Linear Spectral Transformation.

No Transform

Extract CD Feature Candidates

Generate a Difference Image from the two dates of imagery.

Generate a "Candidate Mask" by applying a SignificanceThreshold to Difference
Image.

Identify CD Feature Candidates

Apply the Candidate Mask to the first (most recent) original MSI source image.

Generate a Class Map by applying a classifier to the Masked Source Imagey.

Generate CD Feature Map

Apply the Candidate Mask to the second (older) original MSI source image.

Generate a second Class Map by applying a classifier to the second Masked
Source Imagey.

Subtract the two class maps and generate a "no change" mask that filters out CD
feature candidates that have not changed according to the differenced class map.

Generate a CD Feature Map that retains only CD feature candidates that pass
through the "no change" mask.

Figure 1. Hybrid Change Detection Methodology Diagram
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The presence of multiple bands raises the question of whether to choose a suitable subset or
the entire set, where, of course, the suitab!.e subset is very dependent on the target features
of interest. The presence of correlat,2-d bands raises the question of whether a spectal
transformation could be appied to this hmagery to improve the performance, of a CD
algorithm with regards to either accuracy of the final results or execution ime of thfe
algorithm. If a spectral transformation is perf irmed, the question is again raised of whether
to choose a suitable subset or the er.s.; set of transformed bands.

2.2.1 Properties P! Spectrai Transfornations
There are various types of transforra0, ios that car be applied to an image. Tie ter l"spectral transformation" is used to diffemea, tiate hrtween other types of transformations,
such as a geometric transformations used for re.zsteiing imagery, or spatial transformations
for smoothing and sharpening images.

A spectral transfo rmaton is a maoping of the Vi ei values from "observation space" to"pattern sp ce" (sometimes called "feaiu"e spice" ). For MSI, observation space consists
of image bands that ore the r,-isor responses in specific wavelength regions. Pattern space
is a transformation .way from these physical measurements to something else. This
something e!]o could be a pattern space that is abstract and difficult to visualize in a
p.n ca sense, or it could relate to some other physical quantiy -- perhaps the actual
physical classes/objects of interest. As discussed below and in Appendix A, these
transformations could be e.ther linear or nonlinear, where linear transformations have
ce,-ain desirabie mathematical properties.

The number of bands of MSI determines the dimensionality of the observation space (e.g.
typicaily N -- 6 for L andsat TM data ). Therefore, it is often convenient to group the
nbe' vazions (pixels) of each ground sample as an N-dhnensional pixel vector. The
:.:-in-ton element to all spectral transfomnations is that a pixel vector x of dimension N is
transfo.red to pixel vector y with di-.1asion M. Usually M 5 N, but this is not
necessarily so. M is the numbtr of bands in the transformed image.

In one class of trasformations, the objective is to reduce the dimensionality of the data set.
Generally, these transformations attempt to generate a minimal number of bands with
red,.xed correlation that Oso optimii so,-ne kind of mean square error criteria. One example
is the conventional Principal Conmonent Analysis (PCA) that optimizes with respect to the
a single covariance matrix of the image. However, one must be careful in applying such a
transformation, since there is not always a correspondence between the correlation
(variance/covariance) and mean square error for a set of image bands, and the available
information in those bands to allow class separability. For reasons that are discussed in
Appendix A, PCA was not considered to be a suitable transformation technique for CD.
Another reason is that the resulting transform is highly scene-dependent, and image-
differencing methods used in CD are likely to lead to unpredictable results.

There have been attempts to find transformations that generate a minimal number of bands
that contain maximum class discrimination ability. Some of these focus on optimizing
criteria based on a set of class covariance matrices. Examples are the Canonical
Transformation (CT)3 and Common Principal Component Analysis (CPCA) for k-
Groups.4 These methods are also discussed briefly in Appendix A.

3 Sing-Tze Bow. Pattern Recognition - Applications to Large Data-Set Problems. New York, NY: Marcel Dekker,
Inc., ,984.
4 Bernhard N Flurry. "Common Principal Components in k-Groups." Journal of the American Statistical
Association, Vol. 79, Dec 1984: pp. 892-898.
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The CT, CPCA and a number of variations on these techniques are all linear mappings.
Unfortunately, a linear tr.nsformation that maximizes class separability may not exist.
Nonlinear mapping techniques have been proposed by the research community but they are
not well studied.5

A second class of transformations attempt to generate a suitable number of bands, each of
which emphasizes some physical feature or characteristic such as vegetation, soil,
urbanness, or wetness. These bands would not necessarily optimize class discrimination.
Instead, each band would be optimized to portray some feature of interest. For example, in
a wetness band, the bright pixels would correspond to wet features, such as water or wet
ground. The dark pixels would correspond to something else; ideally, to dry features.
Such transformations can be referred to as characteristic vector transformations.

The transformations investigated in this effort were the Tasseled Cap Brightness/Greenness
Transformation and a Scene-Derived Brightness/Greenness using Gram Schmidt
Orthogonalization. These transforms can be considered linear characteristic vector
transformations.

2.2.2 Brightness/Greenness Transformations

A brightness/greenness transformation is one that reduces the 6-band TM source imagery to
2 bands (components) corresponding to the two physical attributes: brightness and
greenness. Brightness is a measure of the overall brightness of a feature across all 6
original bands. Greenness is a measure of the spectral contrast between the visible and
infrared bands. The pair of components provides a good discrimination between vegetation
and soil features.

As mentioned above, the transformation is applied to both multiband scenes. This
produces two spectrally transformed multiband images, each comprised of two bands. An
increase in greenness between two dates is evidence of an increase in vegetation content for
the ground point in question. If this increase in greenness was accompanied by a
corresponding decrease in brightness, supporting evidence is added and the confidence
would be higher that this point increased in vegetation content. Conversely, an increase in
brightness between two dates is evidence in favor of an increase in soil content, and a
corresponding decrease in greenness would add to this evidence. Two methods for
producing brightness/greenness were tested -- the standard TM Tasseled Cap and a Scene-
Derived Brightness/Greenness transformation.

22..2a Tasseied Cap Brightness/Greenness Transformation

The most well-known method for generating brightness/greenness components is the
automated TM Tasseled Cap procedure. 6 This method has the advantage that it is entirely
automated and scene independent. One set of transformation coefficients is applied to any
TM image -- regardless of scene content or season. The potential disadvantage is that the
use of such a universal set of coefficients may not always be valid for different scenes and
environments.

5 Therrien, Charles W, Decision Estimation and Classification (Section 5.7 Non-Linear Mapping). New York,
NY: John Wiley & Sons, 1989.
6 Crist, E.P. and Cicone, R.C.; "A Physically-Based Transformaton of Thematic Mapper Data - The TM Tasseled
Cap." IEEE Transactions on Geoscience and Remote Sensing, Vol. GE-22, May 1984: pp. 256-263.
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The TM Tasseled Cap is a physically based linear transformation of Landsat TM data that
captures approximately 95 percent of the total variability of a scene in two components --
brightness and greenness -- having the properties as discussed above. This transformation
can also generate a third component, called wetness, that is sensitive to soil and plant
moisture; however, this component was not investigated because its physical properties did
not seem applicable for the change detection of interest. The technique is basically an
extension to an original Tasseled Cap technique developed by R.J. Kauth and G.S Thomas
for Landsat MSS data. 7 The Tasseled Cap brightness/greenness coefficiefts are listed and
plotted, along with those of the Scene-Derived Method in Appendix A.

2.2.2b Scene-Derived Brightness/Greenness

Another method for generating brightness/greenness components is an interactive image-
derived Gram-Schmidt Orthogonalization Procedure.8 This procedure has the advantage
of eliminating the possible invalidity of using a universal set of coefficients because the
transformation is generated via data within the scene.

This procedure requires an analyst to generate interactively statistical training-set data,
similar to what is done with conventional supervised classification algorithms. The training
set represents end-member classes for wet soil, dry soil, and vegetation. If wet and dry soil
features are not present in the scene, other similar feature types may be substituted, as was
done during this effort. Although, this training procedure is not difficult, it does involve
time and a limited amount of skill. In order that the two dates receive equivalent
transformations, it is important that the same ground features be used for both scenes.
Therefore, the training features cannot change across dates, and the analyst needs to
determine interactively this fact.

The primary disadvantage of this procedure is the reduction in automation. However, the
additional training procedure is not actually much of a handicap because later on, during the
CD Feature Identification and Screening Processes, it wil! ,ltimately become necessary to
apply a classifier to both dates. Any of the supervised classifiers require training-set data,
and even the clustering methods could use help from training data to establish good seed
points. Thus, the training-set collection process could be consolidated into one step and
applied to both the spectral transformation and the classifier's training set. As mentioned
above, the transformation coefficients are listed and plotted in Appendix A.

2.2.3 Alternative Spectral Transformations
The use of characteristic vector transformations defined by linear discriminant functions
may also be suitable for this task. These functions define linear decision surfaces that can
generate linearly transformed coordinate axes, which in turn produce transformed images.
Some methods that can generate such linear discriminant surfaces are linear classifiers
using the Minimum Euclidean Distance Rule, error-correction methods using the Absolute
or Fractional Correctional Rules, gradient decent techniques using the Perceptron Criterion
or the Relaxation Criterion Functions, minimuni-squared error procedures using the Ho-
Kashyap or the Widrow-Hoff Methods, as well as Fisher's Linear Discriminant. 9 These
transformations were not investigated in this effort; however, they are good candidates for

7 R.J. Kauth and G.S. Thomas. "The tassel cap -- A graphic description of the spectral-temporal development of
agricultural crops as seen by Landsat". Proceedings for the Symposium on Machine Processing of Remotely
Sensed Data, Purdue University, West Lafayette, Indiana: 1976.
8 Ray Jackson. "Spectral Indices in N-Space." Remote Sensing of Environment, Vol. 13, 1983: pp. 409-422.

9 Sing-Tze Bow. Pattern Recognition - Applicattons to Large Data-Set Problems. New York, NY: Marcel Dekker,
Inc., 1984.
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a follovw-up study that compares the performance of various spectral ~sfoumaaios for
u.e in CD.

One thig in common with all the diarateii-ic vector techuuques is that they develop a
transformation that attempts to portray certain phys.cal features. The Tasseled Cap poria4'
soil and vegetation. Other transfoamations could portray a us-r-defined set of features (e..
water, asphalt, concrete, metal, etc.).

Other alternative candidates for CD were mentioned briefly in Section 22- 1. In particular,
the effect of CPCA on MSI data has never been studied. TIe CT has been studied, but not
in this context

2.3 Extracting CD Feature Candidates

An image-maiierencing and thresholding technique is applied to the individual bands and a
mask is generated using a logical "OR" operation. This mask is called a CD Feature
Candidate Mask and is used to extract CD feature candidates from the multispectral
source imagery. Mask values of zero designate NOCHANGE and values of non-zero
indicate CHANGE. Subsequent tasks will identify and filter these feature candidates. The
mask could also be used itself as an automated stand-alone CD product. A similar image- I
differencing and threshold method, applied to untransformed multispectral scene pairs, was
explored in a prior ETL study. 10

As its name implies, image differencing is the process o; subtracting two images. For
example, call the images of the scene pair (generated by a brightness/greenness
transformation) BGDATEl and BG_DATE2 with components as follows:

Date 1: BGDATEI(BRIGHT)
E-YDATEI(GREEN)

Dale 2 BGDATE2(BRIGHT)
BG_.DATE2(GREEN)

The image-differencing process results in one differenced image that can be called
BGDIFF with components that are calculated as

BGDIFF(BRIGHT) BGDATE2(BRIGHT) - BGDATEI(BRIGHT)
BG-DIFF(GREEN) = BG DATE2(GREEN) - BGDATEI(GREEN)

Note immediately that the values for this differenced image can be both positive and
negative. If the original images (BGDATE1 and BGDATE2) have the typical 8-bit
integer range of 0 to 255, then the differenced image (BG_DIFF) will have a range of -
255 to 255. The largest and smallest (largest negative) values correspond to points that
have most likely changed.

10 James Wickham. Land Cover Change Mapping Using Landsat Thematic Mapper Data. performed by Earth

Satellite Corporation for U.S. Army Engineer Topographic Laboratories (Attn: CEET.-Sl. T (Rand)), Fort Belvoir,
VA. July 1988.
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If the two origginal imagesme1ar cablirated itih respect to each other (by renmo'ing, theeffects of emrmetal facroi such as atmosphere 2nd solar illuminafion), then the points

likely to have changed would hai, a va near zero in the differeaced image. If such
a calibratiay is not performed, the effect should manifest itself by a shift in the diffierenced
image's histogam. Instead of a histogram rak (co-espoading to NO_CHANGE)
hovering about the value of zero, it is likely to hm-er about some other positive or negative
value that reflects a lack of calibration. Howevur, such a shift (if not too Ilge) should nm
affect the ability to det significant changes.

A mask is generated, using a two-tail statistical inference method, that identifies CD feature
candidates. A null hypothesis is formulated that the predominant distribution in a
differenced band's histogram corresponds to NOCHANGE. The alternate hypothesis is
CI.WNGE. Therefore, if there is sufficient evidence to reject the null hypothesis of
NOCHANGE, then the alternate hypothesis of CHANGE is accepted This evidence
comes in the form of a threshold, commonly known as significance value Alpha (cc), that
corresponds to data in the tails of the distribution.

The decision-making rationale is as follows: A value of o = .05 corresponds to 2-5 percent
of the data residing in each of the two tails of the distribution and is basically interpreted to
mean there is a 5 percent chance of making a "Type I Error" in rejecting the null hypothesis
of NO_CHANGE. This would also correspond to a 5 percent "false alarm" rate in detecting
changes. Reducing this false alarm rate can be accomplished by reducing alpha; however,
it will come at the expense of increasing the chance of making a Type II Error Beta (.g) -
accepting NOCHANGE when it should have been rejected. Reducing a further is likely
to cause the CD processor to miss a greater number of changed features. Therefore, one
advantage of the hybrid methodology is that it can allow the Type I (false alarms for
change) error to remain somewhat high during the first step so that any potential change
candidates are not missed, which is perhaps a good idea during the image-differencing
step, particularly if the subsequent thresholds are to be selected based on an assumption
that the differenced image's histogram is predominantly a normal distribution representing
NO_CHANGE.

The threshold range (in pixel values) is defined by selecting an alpha value and determining
the pixel range for which the probability p < cz One parametric method of defining the
threshold is to assume that the predominant distribution is normal (Gaussian) and
represents NO_CHANGE. Using this assumption (not necessarily valid), (X = .05 yields a
threshold range of {x u x2: x1 : (pt - 2y); x2 > (. + 2a)}. An alternate
nonparametric method of defining the threshold range could be used by first selecting an
alpha value, and then empirically determining the pixel range directly from the histogram
distribution without making assumptions of normality. If a = .05 is selected, then the
range would be defined by an x, that contains 2.5 percent of the smallest pixel values and
an x2 that contains 2.5 percent of the largest pixel values.

A mask is generated for each band by remapping all pixels that do not reside within the
range [X1 U x2) to a background mask value (MV) of MV=2. Since the pixels in the
range x, obviously correspond to a different type of change from the pixels in the range
x2, the mask can represent this change by different mask values -- the x, pixels could be
set to a mask value of MV=I, and the X2 pixels could be set to a value of MV=3.



Continuing with the aboim example using e nneass as-es, tis alues of

_MV= 1,29 3 can be intepwe as follows.

mmkid:: of 11v= I DERESED BRDGSS

BGDIFF(BRIGHI) W=2 NOGCHANQ
=3 UCREASEL BRIGHTNESS

mzkina o Mv = I DECREASEIVN GRE ENN ZESS
BRGDIFF(GREEKNTSS) MV =2 NOCIIANGE

MV=3 DCCREASE L GREEN NESS

Combining die masks with a Logical OAND" operation can produce the nine mask value
combinations listed in Table 1:

Table 1. Brightness/Greenness Mask Combinations.

MVs = (2,2) NO CHANGE D; BRIHINESS AND NO CHANGE IN GREENESS
AWs = (2,1) NO CHANGE IN BR "HNESS AND DECREASE IN GRE NESS
MVs = (243) NO CHANGE IN BRIUHTNESS AND INCREASE IN GREENTESS
MVs = (1,2) DECREASE IN BRIGHTNESS AND NO CHANGE N GREENNIESS
MVs = (1.1) DECREASE IN BRIGHTNESS AND DECREASE IN GREENNESS
MVs = (1,3) DECREASE IN BRIGHTNESS &ND INCREASE IN GREENNESS
MVs = (3,2) INCREASE IN BRIGHTNESS AND NO CHANGE IN GREENNESS
MVs = (3,1) INCREASEIN BRIGHTNESS AND DECREASE IN GREENAESS
MVs = (3,3) INCREASEIN BRIGHTNESS AND INCREASEINGREEINNESS

Combining the above masks with a logical "OR" operation can produce other masks. For

example, the operation ( MV(3,2) u MV(3,1) I flags pixels that are very likely to be a
change from vegetation to construction (soil) or urban (concrete). Such a mask retains
pixels that have either an "INCREASE IN BRIGHTNESS AND NO CHANGE IN
GREENNESS" or an "INCREASE IN BRIGHTNESS AND DECREASE IN
GREENNESS".

2.4 Identifying CD Feature Candidates

The CD feature candidates are identified by masking the most recent scene (original MSI
source image) with the CD Feature Candidate Mask and then applying a clustering
operation, or classifier, to the masked scene. Although there are a numerous clustering
operations and classifiers that could be used, this study will restrict itself to three methods
available under LAS -- an unsupervised ISOCLASS clustering algorithm, a supervised
Minimum Euclidean Distance classifier, and a supervised Bayesian classifier. The
results of identifying the CD feature candidates is a "CD Feature Candidate Map".

2.4.1 Clustering Method Tested

The ISOCLASS algorithm available under LAS is a slight modificaton of the well-known
ISODATA (Iterative Self-Organizing Data Analysis Techniques A) algorithm developed by
Ball and Hall. " ISODATA belongs to the category of clustering algorithms that seek to
minimize a specified objective function. Another category of clustering algorithms is based
on graph-theoretic methods. A third category is based on heuristic methods.

In the case of ISODATA, the objective function is a double summation of the distances
between samples and cluster centers. The first summation is the sum of distances between

I1 G.H. Ball, and D.J. 14all. Isodata, A Novel Method of Data Analysis and Pattern Classification. Stanford
Research Institute Technical Rcport, (NTIS AD699616) Stanford, CA. 1965.
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ach samnple and its coresponding cluster center. The second summation is a sum over all
the clusters. Depending on the actual implemention, the measure of distance could be either
Euciidean or City-Bloek ISOCLASS uses the City-Block distance.

ISODATAISOCLASS is an iterative procedure, whereby clusters are continually split and
merged. Acheiving a local minimization of the objective function is easy, as it occurs when
each of the sample; in a data set has been assigned to the nearest cluster center. Such a
solution is found at each iteration of the algorithm. However, as will be discussed, a
unique global solution for the data set cannot be guaranteed.

A brief sketch of the ISODATAIISOCLASS procedure is as follows:

Acting on an initial estimate for the mean vectors (center points) of seed clusters, ISODATA
assigns samples in the data set to the nearest seed cluster. The mean vectors for each cluster are
then recomputed based on the sample assignments. The standard deviation for each band is also
computed.

A split/merge sequence of iterations then acts to create new clusters and merge others. During a
split iteration, a cluster is split into two clusters if the band containing the largest standard
deviation is greater than a specified threshold STDMAX. The split is made along the coordinate
axis represented by this band. During a merge iteration, two clusters are merged together if the
distance between them is less than a specified threshold DLMIN. The sequence is one
distinguishing characteristic between ISODATA and ISOCLASS. Generally, the sequence for
ISODATA is SCSCSCSC... (split on odd iterations, combine on even iterations). ISOCLASS
begins by splitting clusters, and continues to split them until eighty (80) percent of them haveI standard deviations less than the specified STDMAX, after which an alienating sequence begins.

For example, the sequence would look something like SSSSSSCSCSC...

ISOCLASS also has a chaining mechanism that was added to the ISODATA process.
Chaining allows clusters to be joined together in chains after the split/merge sequence, in an
attempt to model non-Gaussian shaped distributions. Theoretically, rather bizarre shapes
could be modeled (e.g. donunt-shaped or S-shaped clusters often seen in Astronomical
objects such as in Ring Nebulaes and S-shaped Galaxies). However, because we are
concerned with spectral rather than spatial classificatioin, Gaussian clusters are probably
appropriate models, so that chaining is not necessary.

An analyst using ISOCLASS can use its default parameters for minimal interaction, or a
priori knowledge about the data set for potentially better performance. The default set of
initial seed clusters is a single cluster with its mean vector and standard deviation computed
from the entire data set. Better performance could potenially be acheived by specifying to
the algorithm a statistics file containing sample statistics of known ground features obtained
from the data set. However, usually the motivation for invoking a clustering method is
that either very little a priori knowledge about the scene is available, or that there is
insufficient time to perform an alternative supervised learning method. Therfore, this CD
effort only studied the effect of using the default seed cluster.

As mentioned above, one problem in using ISOCLASS is that finding a unique global
solution can be difficult. This clustering technique may settle into a local rather than global
solution (i.e. the minimized value of the objective function is not a global minimum). The
local solution generally depends on the initial starting estimates for the seed clusters.
Specifying different seed points for the initial clusters will probably produce different
classification outputs. The differences may not be significant. Nevertheless, a unique
solution can never be guaranteed.
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Another problem is convergence. ISOCLASS has a tendancy not to converge to a fixed
number of clusters and must be terminated with a parameter specifying the maximum
number of iterations.

When the clustering process is completed, an analyst must make a physical correspondence
between the solution clusters and the corresponding ground features. For broad categories
of features, such as deciduous and coniferous trees, water, asphault, and concrete, this
task is probably not difficult using a conventional false-color band combination of
multispectral imagery. Identifying finer categories are likely to be a problem. This could
pose some difficulty during the subsequent post-classification screeening process of the
CD feature data, since it is necessary to match clusters between dates. The problem will be
discussed further in the Section 2.5; however, suffice it to say that if automation is a key
issue, the results generated up to this point are likely to produce valuable information
without going through the screening process, and could be useful by themselves as CD
products.

2.4.2 Supervised Classifiers Tested

Two supervised classifiers were tested for identifying CD features: the Minimum Euclidean

Distance classifier and the Bayesian classifier. The primary advantage to superised
classification methods is that they will produce a consistent set of feature classes later on
during the screening process when it becomes necessary to classify the second scene.

Of the two classifiers, the Minimum Euclidean Distance classifier is the simplest and
fastest. It is also a linear classifier, meaning that the decision surfaces are lines/planes.
Unless the dimensionality of the image data is quite high, it is also likely that such linear
surfaces will be inadequate to segment the imagery into the required classes.

The Bayesian classifier is more complex and computationally slower. However, from a
statistical point of view, it is also optimal because it minimizes the probability of
classification error. This classifier is quadratric and generates decision surfaces that are
curves/hyperplanes. Since this is also a parametric classifier, most implementations (such
as in LAS) assume the class data belong to multivariate distributions (MVN). The MVN
assumption allows the distributional properties of each class to be completely specified by a
mean vector and covariance matrix (see also Appendix A).

The major source of Bayes classification error usually comes from inadequately modeling
the class distributions, or in overlapping distributions. Sometimes this error is attributed to
falsely assuming that these distributions are MVN; however, it is highly likely that the real
problem is mixed pixels comprised of more than one feature. Mixed pixels in a training
class will cause the class variance estimate to be too high and give the class distribution too
high a spread. Ideal training classes should have low variance/covariance to reduce the
overlap between classes. Mixed pixels in remaining image data can skew the pixel vector
intensities toward the wrong class, resulting in misclassifications.

Both of these methods require training the classifier on a set of classes. For this study, the
following clases should be represented: water, concrete, metal, asphalt, deciduous trees,
and coniferous trees. With minimum training, these classes are not usually difficult for an
analyst to ircognize. The primary problem is likely to be mixed pixels. In urban areas, it
is difficult to find pure pixels (at 30-meter resolution) of concrete, asphalt, or metal.
Typically, pix.,s will be a mixture of these materials.
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Note that the classes used for training a classifier ar also the same kind used in generating
the scene-derived spectral transformatinns discussed earlier (e.& transformations produced
by Gram-Schmidt Orthogonalization, Linear Discriminant Functions). Therefore, one
interactive session should suffice for training both the classifier and the spectral
transformation. An important factor, however, is that the same ground features be used for
both scenes. Therefore, the training features cannot change across dates, and the analyst
needs to determine interactively this fact.

2.4.3 Alternative Clustering Methods

The problems of uniqueness and convergence mentioned in Section 2.4.1 are typical of
most clustering methods, and considerable effort has been made to overcome them by
modifying the approach. One approach by Ismail and Kamel is a hybrid search strategy
that alternates between a breadth-first search and a depth-first search for an improvement
(decrease) in the objective function.12 Samples are moved from one cluster to another and
all possibilities are examined. In breadth-first search a pattern is moved if the reassignment
results in the best improvement to the objective function. In depth-first search a pattern is
moved the first time it results in an improvement to the objective function.

Another approach is the Mixture Model clustering method. A data set is assumed to consist
of a mixture of several multivariate normal (MVN) populations, each corresponding to a
ground feature. The maximum likelihood approach is used to compute maximum

likelihood estimates (MLE's) of the mixing proportions irk, mean vectors j-tk, and
covariance matrices 4 corresponding to each underlying population. Various model
selection criteria have been proposed including hypothesis testing (e.g. likelihood ratios) 13

and information-theoretic testing (e.g. Akaike's Information Criterion, and Schwarz'
Criterion). 14 A notable difference between the Mixture approach and ISODATA is the use
of the covariance structure of the data- ISODATA only considers the variance. Also,
because of the use of MVN models, belonging probabilities can be assigned to each pixel.

An entirely different approach to clustering that generates solutions independent of initial
seed points belong to the categ _j of graph-theoretic methods. Initial attempts at clustering
using this approach were based on constructing minimal and maximal spanning trees
(MSTs); 15 however, these methods were also easily corrupted by statistical outliers. A
method that seems to be promising is based on constructing either a Relative Neighborhood
Graph or a Gabriel Graph.l 6 Clusters are then formed by breaking this graph according to
edge inconsistencies.

These alternative clustering methods offer potential improvements if substituted into the
proposed CD methodology. However, software to test these algorithms has not yet been
implemented on ETL's SRTF.

12 M.A. Ismail, and M.S. Kamel. "Multidimensional Data Clustering Utilizing Hybrid Search Strategies."

Pattern Recognition, Vol. 22, No.1,1989: pp. 75-89.
13 R.K. Lennington, C.T. Soreasen, and R.P. Heydorn. "A Mixture Model Approach for Estimating Crop Areas

from Landsat Data." Remote Sensing of Environment, Vol. 14, January 1984: pp. 197-206.
14 Hamparsum Bozdogan. Determining the Number of Component Clusters in the Standard Multivariate Normal
Mixture Model Using Model-Selection Criteria. Technical Report No. UIC/IDQMA83-1. Army Research Office,
June 1983.
15 Sing-Tze Bow. Pattern Recognition - Applications to Large Data-Set Problems. New York, NY: Marcel Dekker,
Inc., 1984.
16 Roderick Urqubart. "Graph Theoretical Clustering Based on Limited Neighborhood Sets." Pattern Recognition,
Vol. 15, No. 3, 1982: pp. 173-187.
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2.5 Generating a CD Feature Map

In the prior task, a clustering operation or supervised classifier was applied to the most
recent scene (original MSI source image) to identify the CD features. However, these
identified features are still only CD candidates, and additional evidence could be used to
screen out false alarms and increase our confidence in the process. The final CD feature
map is generated by incorporating conflicting evidence of NOCHANGE that is supplied
by differencing the class map derived from the most recent scene and the map derived from
the earlier scene. This method is referred to as post-classification subtraction.

2.5.1 Post-Classification Subtraction
In a prior ETL study, the Post-Classification Subtraction (PCS) method was investigated
as a technique for detecting change. 16 Each of the registered scenes was classified using a
Minimum Euclidean Distance classifier and the resulting class maps were subtracted. The
method did not produce acceptable results, primarily because of the classifier's error rate. If
a classifier had a 0.0 percent error rate for both dates, then the resulting CD map would
have no errors. However, this performance will quickly deteriorate even for small
classification error rates, because any misclassification on either date will produce a CD
map error. The CD errors (mostly false alarms) will quickly propagate and produce
unacceptable results. For example, suppose a classifier's overall error rate on each image
were 14 percent (a reasonable and perhaps optimistic assumption) and that half the errors
overlap. This situation is likely to produce a combined CD error rate of about 21 percent.
Therefore, 21 percent of the image pixels could be falsely tagged as change, and this
percentage does not include the actual changes. Note that this percentage (21 percent)
corresponds to a lot of change!

Rather than use the PCS method as evidence for change, suppose it is used as evidence for
NOCHANGE. That is, let the PCS method be used to identify ground points that don't
change, and use these identified points to screen out (eliminate) the feature candidates
identified during the image-differencing process. Since there are more ways for a classifier
to be wrong than to be right, a classifier's error rate should not affect a decision of
NOCHANGE as much as a decision of CHANGE. Whereas an error rate of 14 percent
(above) adversely affected a classifier for detecting CHANGE, it should not be as harmful
as a screening mechanism for detecting NOCHANGE.

As an example, suppose there were five classes defined as the classification set (WATER,
ASPHALT, CONCRETE, DECIDUOUS_TREES, and CONIFEROUSTREES). A
priori, there is a 20 percent chance of being correct and an 80 percent chance of being
wrong, without input from a classifier. This fact, a!ong with fairly good classification
accuracy (say, 86 percent in the previous examples) of a classifier, causes PCS to yield a
fairly strong statement when it gives conflicting evidence against the image differencing
results that produced the CD feature candidates.

In order to usethe PCS method, apply the same clustering operation or class'ier that was
applied to the most recent scene for identifying the CD feature candidates to the older scene
(masked by the CD Feature Candidate Mask). Obviously, each clustering/classification run
must have the same set of classes; the class values must be numeric, with values CV =A,
N (where N is the number of classes); and the class values for each run must correspond to
one another. For example, if the classification set for the first date is (WATER,

16 Wickham, James. Land Cover Change Mapping Usirg Landsat Thematic Mapper Data. performed by Earth

Satellite Corporation for U.S. Army Engineer Topographic Laboratories (Attn: CEETL-SL-T (Rand)), Fort Belvoir,
VA. July 1988.
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ASPHALT, CONCRETE, DECIDUOUS-TREES, and CONIFEROUSTREES }, the
classification set for the second date should be the same. If the class value CV=2 represents
asphalt on the first date, it must also represent asphalt on the second date. One exception to
this rule is for the supervised classification case of a class designated as UNKNOWN. This
exception will be discussed later.

As briefly mentioned in Section 2.4.1, unsupervised ISOCLASS clustering can present
problems to the PCS method. The clustering/classification runs must produce a matched
set of classes with CV's that correspond to one another. There is no guarantee that the
clusters produced from the first run of ISOCLASS correspond to the clusters of the second
run. For example, if the cluster limit for both runs is set equal to CL=5, ISOC.,ASS's
cluster set for the first run would probably be (CLUST01, CLUST02, CLUST03,
CLUST04, CLUST05}, and its cluster set for the second run would also probably be
{CLUST01, CLUST02, CLUST03, CLUST04, CLUST05). The class names are the
same and so are the class values. But do they actually correspond to the same features?
Since the clustering was performed on a masked pair of images that already represent pixels
with the greatest likelihood for change, there is definitely a chance that the features do not
correspond.

The ambiguity presented to the PCS method by unsupervised clustering can likely be
solved by invoking a statistical distance measure, such as the Divergence Measure or the
Bhattacharyya Distance.17 Either of these measures could be used to match corresponding
clusters between dates. The intersection of the two sets of clusters could be used as a PCS
filter.

The PCS method is applied by subtracting the class map results from each run. This
process results in a PCS filter map containing non-zero (positive and negative) integers that
designate CHANGE and a value of zero that designates NO_CHANGE. Note that if an
UNKNOWN class is included in the classifier's feature set, then the class value should be
set to a different number for each date; otherwise, the PCS process will designate the
difference in two unknown classes as NOCHANGE. Obviously, if the class in each date
is unknown, one cannot know that the underlying features did not change.

Although the PCS method should reduce false alarms (Type I Error), it will do so at the
risk of eliminating valid CD features (increasing Type II Error). This risk was studied
during the laboratory experiments.

2.5.2 Applying the PCS Filter Map

The final CD Feature Map is generated by overlaying the PCS Filter Map onto the CD
Feature Candidate Map. During the overlay process, those pixels which have a value of
zero in the filter map and any value in the image-difference map are set to some arbitrary
constant (say, CV=100) in the final CD Feature Map. For any nonzero value in the filter
map, the CD Feature Map retains the value in the candidate map.

This process effectively tags the filtered features with a class value that can be considered a
class type "FILTERED". At this point, an analyst could have the option of interactively
editing individual "FILTERED" features, or automatically setting them to the background
that designates NOCHANGE.

17 Therrien, Charles W. Decision Estimation and Classification Ne, York, NY: John Wiley & Sons,1989.
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2.6 Seasonal Issues Affecting CD Results

The simplest CD scenario occurs for scene pairs representing different years, but the same
season. In such a case, most of the vegetation features will be approximately at the same
point in their growth cycle; therefore, the spectral reflectance of vegetation features will be
fairly close in both scenes. Of course, some vegetation features could become stressed or
unhealthy in one of the scenes and exhibit a corresponding spectral change. In fact,
numerous environmental effects could cause a shift in the spectral properties of many
natural features. Nevertheless, the effect is still minimal compared to scenes acquired from
different seasons. Optimal CD processing results are thus likely to be achieved when scene
pairs are acquired for the same season.

In considering biseasonal change detection, certain seasonal combinations are likely to be
more favorable than others. If an analyst is invoking a brightness/greenness
transformation, then the before/after combinations of

fall-to-spring,
fall-to-summer,
winter-to-spring (assuming no snow).
winter-to-summer (assuming no snow),

should produce far better results than the before/after combinations of

spring-to-fall,
summer-to-fall,
spring-to-winter (assuming no snow),
summer-to-winter (assuming no snow).

The reason is that, in the first group, the property of greenness increases from the oldest to
the newest scene for vegetation features, and this trend is indicative of new vegetation.
Such flagged changes can easily be ignored for cartographically oriented change detection.
In the second group, however, the property of greenness decreases and this trend is
indicative of new urban features. Such flagged features are likely to increase dramatically
the false alarm rate of urban changes.

Recall that the PCS filtering method was introduced to reduce the number of false alarms
generated by the initial image-differencing process. Whereas the need for invoking the
PCS Filter may be minimal for single-season change detection, the real payoff for this
method could be biseasonal change detection. During the classification process, seasonal
effects may influence the difficulty in classifying certain vegetation features; however, once
complete, the class maps record only class values.

1. DESCRIPTION OF LABORATORY EXPERIMENT

The laboratory trials conducted under this effort were done using the LAS Software that
resides on ETL's Space Research Test Facility (SRTF) at Fort Belvoir, VA. This software
was developed by NASA/Goddard Space Flight Center and USGS/EROS Data Center.
The ETL version is currently being supported by EROS. The SRTF hardware supporting
LAS consists of a VAX 11/785 computer with a Gould IP8500 Image Processor.

In addition to describing the general experimental approach, much of the discussion in this
section is focused on documenting the experimental procedures as they were implemented
on LAS. Ncte that although the procedures may seem to imply that the methodology is
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quite tedious, most of the steps identified can be automated. LAS has a facility to
implement a sequence of repetitive tasks using Procedure Definition Files (PDFs).

During this experiment, 20 trials were conducted. Eighteen of these trials were performed
using the standard TC Brightness/Greenness Transformation. Of these 18, 16 tested a
single-season scenario and the performance of various classifiers as well as parametrically
and nonparametrically derived change masks in an attempt to identify the best performing
classifiers and masks. The other two trials of the 18 tested a biseasonal change scenario
using the Bayesian classifier and a parametrically derived change mask. The other two of
the 20 trials tested the Scene-Derived Brightness/Greenness transformation with the
Bayesian classifier (single season, parametric). A listing of these trials can be found at the
end of this section in Table 5.

3.1 Source Data and Test Site Selection

Landsat Thematic Mapper (TM) Imagery was used as the source imagery. In order to get a
representative data set of cartographic significant features and backgrounds, as well as
seasonal variations, a Multiscene/Multitemporal Montage Data Set of Landsat TM data was
used. This data set was recently generated by ETL for conducting experiments in terrain
analysis and change detection. The study area is a representative sampling over a full scene
of Landsat TM (approximately 185 * 185 square km) covering the Washington D.C.,
Virginia, and Maryland region. Four dates of imagery were acquired: May 1985, August
1985, October 1985, and May 1987. The multidate/multiscene montage concept is
illustrated in Figure 2.

Multiple date coverage allows various pairwise scenarios:

May 1985 to May 1987 (same seasons, different
years)

Aug 1985 to May 1987 (different seasons, different
years)

Oct 1985 to May 1987 (different seasons, different
years)

Since adequate ground truth coverage of the full mosaic scenes is still underway, a selected
subset was extracted for this effort's experiments. Also, due to time limitations, only two
of these combinations were tested -- May/May and Oct/May. The testing of the other
seasonal combinations is strongly recommended.

Figure 3 shows a radiometrically enhanced color print of the complete (1024 * 1024) study
area for May 1987. The RED-GREEN-BLUE band combination is B4-B7-B2. In Section
4.0, Figures 4 and 5 show the same type print (at a larger scale) extracted from a selected
512 * 512 subset for May 1985 and May 1987, respectively.
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Figure 3. Radiometrically-Enhanced May 1987 Scene of Complete Study
Area

(B4.B7-B2)
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3.2 Standard TC Brightness/Greenness Trials

As mentioned above, 18 of the laboratory trials (see Table 5) were conducted using the
standard Tasseled Cap Transformation. Sixteen of these trials tested a single-season CD
scenario, using the May/May scene pair with either the CD mask generated by the
parametric thresholding method (Trials 1, 2, 3, 4, 5, 6, 7, 8, 17, 18, 19, 20) or the CD
mask generated by the nonparametric thresholding method (Trials 9, 10, 11, 12).

Biseasonal effects were evaluated in Trials 13 and 14 using the Oct/May scene pair. Since
the processing steps are essentially the same for single-season and biseasonal pairs, only a
detailed description for processing the May/May scene pair is given. The major difference
between the trials for the two pairs is the greater extent to which the single season pair was
investigated. Only the two more suitable of the four classifiers and the most suitable CD
mask was selected for testing the biseasonal scene pair. Also, the PCS step was not tested
for the biseasonal case, due to time constraints.

3.2.1 Generating the Tasseled Cap Transformation
The first step was to produce brightness and greenness bands for each of the two 6-band
Landsat TM scenes. This was done using an LAS program called FACTOR that
generates a linear transformation based on an input set of transformation coefficients. As
mentioned earlier, these coefficients are listed in Appendix A. FACTOR produces an
image file with a data type of REAL*4, with values that can be both positive and negative.

To view the brightness and greenness images on a display, it is necessary to radiometrically
remap the REAL*4 pixel values, based on the image statistics and convert the images to a
data type BYTE (8-bit integers). Although it is possible to do this through an automatic
conversion with one of the LAS programs, better visual results are obtained if the
conversion is done interactively in separate steps. Appendix B discusses two methods of
performing this radiometric mapping.

The brightness and greenness scene pairs wece viewed during the experiment to gain a
better feel for what the Tasseled Cap transformation was doing, as well as to visually verify
that the transformation procedure was implemented correctly. However, note that such
viewing is not actually part of the proposed Hybrid CD methodology.

3.2.2 Extracting CD Feature Candidates
The image-differencing process was invoked using ADDPIC. In order to maintain higher
precision, as well as to avoid a possible shifting of the data points that could occur during
the data type conversion process, the image differencing was performed on the REAL*4
data. The May 1985 scene was subtracted from the May 1987 scene, after which the
resulting REAL*4 difference image was converted to the INTEGER*2 data type.
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Two methods of defining a tlueshold range for significant changes in brightness 3nd
greenness were investigated. In each case, INTEGER*2 data was used to maintain
precision and to preserve data integrity.

Thresholding Method 1 (parametric) utilized the differenced image's mean and standard
deviation. The complete significance range was taken to be (x1 u x2 : xl -< (pt - 2a) ; x2

> (Rt + 2a)). Two masks were produced with the program MAP using the mapping
parameters listed in 'Fable 2.

Table 2. Parametric Brightness/Greenness Mask Values.

Physical Progerty Threshold Input Range

Mask 1 DECREASE IN BRIGHTNESS Xl -351 to -46 10
Mask 1 NO CHANGE IN BRIGHTNESS NC -45 to 23 20
Mask 1 INCREASE INBRIGHTNESS x2 24 to 316 30
Mask 2 DECREASE IN GREENNESS Xl -184 to -31 1
Mask 2 NO CHANGE IN GREENNESS NC -30 to 31 2
Mask 2 INCREASE IN GREENNESS x2 32 to 175 3

In Threshold Method 2 (nonparametric), the range was derived empirically from the
histogram, selecting the significance range as a certain percentage of the pixels
(approximately 2.5 %) in the tails of the distribution. Two masks for this method were
produced with the MAP using the mapping parameters listed in Table 3.

Table 3. Nonparametric Brightness/Greenness Mask Values

Physical Property Threshold Input Range
Mask 1 DECREASE IN BRIGHTNESS Xl -351 to -44 10
Mask 1 NO CHANGE IN BRIGHTNESS NC -43 to 21 20
Mask 1 INCREASE IN BRIGHTNESS x2 22 to 316 30
Mask 2 DECREASE IN GREENNESS Xl -184 to -35 3
Mask 2 NO CHANGE IN GREENNESS NC -34 to 27 2
Mask 2 INCREASEIN GREENNESS x2 28 to 175 1

For both methods, Masks 1 and 2 were added using ADDPIC, producing a single mask
with 9 values, as shown in Table 4.

Table 4. Combining Brightness/Greenness Mask Values

Logical Operation M
NO CHANGE IN BRIGHTNESS AND NO CHANGE IN GREENNESS 22
NO CHANGE IN BRIGHTNESS AND DECREASE IN GREENNESS 21
NO CHANGE INBRIGHITESS AND INCREASE IN GREENNESS 23
DECREASE IN BRIGHTNESS AND NO CHANGE IN GREENNESS 12
DECREASE IN BRIGHTNESS AND DECREASE IN GREENNESS 11
DECREASE IN BRIGHTNESS AND INCREASE IN GREENNESS 13
INCREASE IN BRIGHTNESS AND NO CHANGE IN GREENNESS 32
INCREASE IN BRIGHTNESS AND DECREASE IN GREENNESS 31
INCREASE IN BRIGHTNESS AND INCREASE IN GREENNESS 33
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Note that cerain (contbineM mask values ae nie liRely to coespond to h ll
significant changes than othrs. MV=32 and MV=31 2re good candidates for
cartographically significant change, wheias% MV="_ indicates NO_CKANGE. The mask
values of MV=13 and MV=23 are Vrobaly shifts to vegetanon and ae not geneally of
interest to caitographic change detection. Other mask values are not quite so obvious, but
can perhaps be related to certain changes, after empi-ically observing the experiment
process for a large number of samples.

The CD mask of nine values (for either method) was used in two ways. First, for all but
two of the trials, the nine values were reduced to the two values

My=0 (No CHANGE C=d) for WV= (22)
MV= 1 (CHANGE md_) for MV = (11. 12. 13. 21.2 B 31.32,33).

The classification process that followed was then used to identify sigl;ficant and
nonsignificant changes. Second, for Trials 19 and 20, the mask values were reassigned to
the two values

MV'=0 (NOCHANGEFeanze) for MV = (13.23. 22,33)
MV= 1 (CHANGE Feaan=) for MV = 111. 12. 21.31.32).

The rationale for this second assignment was to relate the nine mask values to actual classes
in an attempt to correlate the mask values generated by brightness/grenness image
differencing with significant and non significant physical features. If a good correlation
could be made, then the need for invoking a classifier to identify CD features (the next step)
might not be necessary. For example, if such a correlation could be made for
nonsignificant features {MV = 13, 23, 33), the next step would be to explore color codes
that could be assigned to [MV = 12, 11, 21, 32, 31 ) representing different types of
significant changes.

3.2.3 Identifying CD Feature Candidates

Three segmenting methods were tested for their ability to identify CD feature candidates: an
unsupervised ISOCLASS clustering operation, a Minimum Euclidean Distance classifier
(supervised), and a Bayesian classifier (supervised). As mentioned in the previous section,
these clustering/classification methods were applied to the most recent date of the original
multiband scenes (not the transformed scenes) -- May 1987.

For processing efficiency, a (two-level) hierarchical classification strategy was used. The
mask values obtained from the prior step were used to create a LevelOne class map via the
program MAP. This was done by remapping the nine mask values into two values
representing CHANGE and NOCHANGE. A program called SPECSTRT was used to
stratify the original May 1987 multiband image into two multiband images. The first
stratified image contained all the pixels identified as NO_CHANGE in the LevelOne Class
Map. The second stratified image contained all the pixels identified as CHANGE.

Each of the clustering/classification methods was applied to the second stratified image,
producing a LevelTwo Class Map containing classified features for LevelOne CHANGE
class. Since there was no need to process the first stratified image, about 90 percent of the
scene's data were eliminated and processing time was reduced considerably.

The program ISOCLASS was used during Trials 7, 8, 9, 19, and 20 for testing the
unsupervised ISOCLASS clustering operation. The cluster limit was set to five for Trial 7;
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ten for Trigl 8; Fhe for T-ia! 9: five fr Trial 19, and ten for Trial 20. For those trials given
a cluster Limit of ten, the number of clusters was lamr combined to a smaller number, as
indicated in Table 5. Seed points for the clusters remained at the default of zero.

The supervised classifiers required the definition of a training set- For consistency, the
same training set was used for both classifiers. Also, training statistics for the supervised
classifiers were collected over sites that didn't change bemeen dates. Such sites were
selected while flickering the two dates with radiometrically enhanced B4-B7-B2 (RGB)
combinations to identify suitable featurmes.

Enhanced images were used for training because the original Landsat TM bands had a
rather low dynamic range. Con¢sequently, the human eye is not likely to recognize spectral
variability in the unenhanced images that are significant to a classifier. During the training
session, an attempt was made to keep the samples as homogeneous as possible.

Six classes were defined as the training s-t: (BRIGHT URBA]%N, MIXED URBAN,
DECIDUOUS VEGETATION, WATER, PARKING LOT, and CONIFEROUS TREES).
Most of these classes were comprised of more than one site to obtain representative
statistical samples. To construct the training set, define polygons by using PUT-POLY
and convert to a statistics file using GOF2STAT. These programs enable the polygons
representing different sites to be grouped into classes. At this point, however, only the
vertices of the polygons along with the class/site structure, are stored in the statistics file.To
collect the mean and covariance statistics for the sites and class, use STATS-ALL on the
May 1987 scene.

The training site statistics were printed using the LIST option in a program called
EDITSTAT. In addition to reviewing this printout, DIVERGE was run to compute the
divergence measure between classes. After a quick analysis of the statistics, the author
decided to drop a couple of sites, which was done by using EDITSTAT to delete the sites
and again using STAT-ALL to recompute the statistics.

At this point, two classifiers were tested to identify the CD feature candidates. The
program MINDIST was used to apply the Minimum Euclidean Distance classifier to tht.
stratified May 1987 image using the statistics file just computed. The program BAYES
was then used to apply a Bayesian (maximum likelihood) classifier to the same image,
using the same statistics file. In each case, the output of the classifier was a class map that
assigned each of the pixels in the stratified Level_Two Scene to one of the class members
defined by the training set. See Table 5 for a listing of trials utilizing the supervised
classifiers.

To make allowance for an unknown class, select options within BAYES to compute an
output statistics file and to generate a maximum likelihood probability image. These output
files were subsequently used in the program UNKNOWN. This program assigned pixels
to an unknown class if a pixel's statistics were computed to lie outside the class member
distribution, as specified by a significance level. For this experiment a sign:"Cance value
of a =.05 was selected.

Most of the trials tested the parametrically defined mask (Table 2). A few others tested the
nonparametrically defined mask (Table 3).

Finally, each LevelTwo Stratified Class Map was consolidated back into a LevelOne
Class using the program SPECCOMB. This step was necessary because during the
stratification process, the LevelTwo Class Maps lose the spatial structure associated with
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an iage. The spatial structure is only maintained at LevelOne and must be restored byusing SPECCOMB.

3.2.4 Generating a CD Feature Map

Trials 1, 2,3, and 9 tested the use of a PCS filter on the Standard TC transformed CD
candidates for the Bayesian plus Unknown, Bayesian, Euclidean, and ISOCLASS
classifiers, respectively. The mask generated from the Table 2 parameters was again used
to stratify the May 1985 6-band image. In applying a PCS filter, the Level_Two Stratified
May 1985 Multiband Stene was classified for each of the four classification methods. As
before, only the changes were classified.

In the case of the Bayesian w/unknown class map, the unknown classes were given a
different identifier. For May 1987, CV(UNKNOWN) = 25. For May 1985,
CV(UNKNOWN) = 50.

In the case of ISOCLASS, the corresponding clusters for each date had to be identified
using the program DIVERGE. During Trial 9, the distances between the clusters of one
date with the clusters of the second date were compared. The smallest distances identified
matching clusters. However, noting that the image clusters were collected exclusively from
the stratified CHANGE image (regions with the highest potential for change), this matching
process was judged to be risky. No other trials were made.

The PCS process was applied by using ADDPIC to subtract each May 1985 class map
from the corresponding May 1987 class map. The resulting PCS images had a data type of
hNTEGER*2 with positive and negative integers. Because we are interested only in
separating zero (no change) and non-zero values (change), the absolute value of these
images was taken using the program ABS. Also, because the resulting image needs to be
overlayed with the CD Feature Map (data type = BYTE), the images were then converted to
data type BYTE using CONVERT.

3.3 Scene-Derived Brightness/Greenness Trials

Trials 15 and 16 performed a test of the Scene-Derived method for generating a CD mask.
The May/May mulnband scene pair was transformed, using the Gram-Schmidt Method for
orthogonalizing vectors. The training set used for the transform were mean vectors taken
from the 1985 and 1987 training set used for supervised classification. Three vectors were
used to produce two brightness/greenness coefficients:

Training Vector TC End Member
Water Wet Soil
Bright Urban Dry Soil
Deciduous Vegetation Vegetation

Image-differencing and thresholding proceeded as described above, and Parametric
Thresholding was used. The Bayesian w/Unknown and Bayesian classifiers were tested.
Because of nearly equivalent results (to be discussed later), it was not necessary to test the
PCS Filter Method.
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3.4 Ground Truth Map

A ground truth map was made to represent 320 CHANGE and 17271 NOCHANGE
points for the purpose of generating contingency tables. These features are defined as
follows:

Bright Urban: Concrete or metal urban features such as
concrete and metal rooftops, roads and runways. Also pure
bright soil.

Mixed Urban: A mixture of concrete and asphalt urban
features, as well as construction areas.

Dark Road: A specially selected dark paved road near airport
in Frederick, MD.

No Change: Areas that have not changed between May 1985
and May 1987.
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Table 5 Summary List of CD Laboratory Trials

Trial #01 Filtered Bayesian wI Unknown - May 85 to May 87
Parametric - Standard TC

Trial #02 Filtered Bayesian - May 85 to May 87
Parametric - Standard TC

Trial #03 Filtered Euclidean Distance - May 85 to May 87
Parametric - Standard TC

Trial #04 Unfiltered Bayesian w/Unknown - May 85 to May 87
Parametric - Standard TC

Trial #05 Unfiltered Bayesian - May 85 to May 87
Parametric -Standard TC

Trial #06 Unfiltered Euclidean Distance - May 1985 to May 1987
Parametric - Standard TC

Trial #07 Unfiltered ISOCLASS - May 1985 to May 1987
Parametric - Standard TC 5 chance clusters

Trial #08 Unfiltered ISOCLASS - May 1985 to May 1987
Parametric - Standard TC - 5 change clusters combined from 10

Trial #09 Filtered ISOCLASS - May 1985 to May 1987
Nonparametric - Standard TC

Trial #10 Unfiltered Bayesian w/Unknown - May 85 to May 87
Nonparametric - Standard TC

Trial #11 Unfiltered Bayesian - May 85 to May 87
Nonparametric - Standard TC

Trial #12 Unfiltered Euclidean Distance - May 85 to May 87
Nonparametric - Standard TC

Trial #13 Unfiltered Bayesian w/ Unknown - Oct 85 to May 87
Parametric - Standard TC

Trial #14 Unfiltered Bayesian - Oct 85 to May 87
Parametric - Standard TC

Trial #15 Unfiltered Bayesian w/Unknown - May 85 to May 87
Parametric - Scene Derived TC

Trial #16 Unfiltered Bayesian - May 85 to May 87
Parametric - Scene Derived TC

Trial #17 Unfiltered ISOCLASS - May 1985 to May 1987
Parametric - Standard TC
Water Included in Change Class of Trial #7

Trial #18 Unfiltered ISOCLASS - May 1985 to May 1987
Parametric -Standard TC
Water Included in Change Class of Trial #8

Trial #19 Unfiltered ISOCLASS -May 85 to May 87
Parametric -Standard TC -Vegetation Masked

Trial #20 Unfiltered ISOCLASS -May 85 to May 87
Parametric - Standard TC - Vegetation Masked
4 chlwters combined from 10
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4.0 DISCUSSION OF RESULTS

Figures 4 and 5 show radiometrically enhanced color prints for a selected 512 * 512 subset
of the May 1985 and May 1987 scenes, respectively. As with Figure 3, the RED-GREEN-
BLUE band combination is B4-B7-B2. Figure 6 is a CD map for Trial 8, which was one
of the better performing trials

A summary of the results of the 20 trials conducted during the experiment is shown in
Figure 7. This figure contains plots of omission and commission errors versus the trial
number for CHANGE and NQCHANGE. The commission errors for CHANGE
correspond to a false alarm rate for changes (also referred to earlier as a Type I error for the
null hypothesis of NQCHANGE). The omission errors for CHANGE correspond to
missing known changes in the ground truth map. For the purpose of change detection, this
omission error is the more serious of the two. The commission errors for NO_CHANGE
correspond to labeling known changes as NQCHANGE, whereas, the omission errors for
NOCHANGE correspond to labeling known non-changes as CHANGE.

The plots in Figure 7 were generated from the data found in Appendix D. This appendix
contains the confusion matrices as well as the omission/commission errors for CHANGE
and NO CHANGE for each trial in the experiment. The tables found in Appendix D group
the cartographically significant changes ( i.e., bright roofs, mixed urban, asphalt-
predominant urban, and unknown) into a class called CHANGE, and the nonsignificant
changes (i.e., vegetation and water) into a class called NO CHANGE.

A quick look at the 20 trials plotted in Figure 7 shows that these trials produced excellent
omission and commission error rates for the NOCHANGE category that ranged between
0.4 percent to 1.2 percent. Very acceptable omission error rates were demonstrated for the
CHANGE category during some of the better performing trials that were as low as 2.2
percent (Trials 4, 5, 10, 11, 15, 16, 17, and 18). However, some of the trials (particularly
those associated with the PCS filter) produced unacceptably high omission error rates -- as
high as 39 percent. All of the trials produced somewhat high commission error rates for
CHANGE that ranged from 21-41 percent.

A comparison of Trials 4 & 5 with Trials 15 & 16 indicates no significant difference
between the results achieved from the standard TC method of generating the CD mask and
the Scene-Derived method.

A comparison of Trials 4, 5, and 6 vith Trials 10, 11 and 12 indicates that the results
achieved from the parametric method of setting the mask thresholds were somewhat better
than those achieved from the nonparametric method; however, this difference is probably
not significant.

Trials 1, 2, 3, and 9 indicated difficulties with the PCS Filter Step. This step reduced the
commission errors generated by the image differencing process; however, it also produced
an unacceptable increase in the omission errors. For example, the omission error for the
Bayesian classifier increased from 2.2 percent (Trial 5) to 39 percent (Trial 2). The
increase in the omission error for the Bayesian w/ unknown classifier was only about half
this amount -- increasing from 2.2 percent (Trial 4) to 23 percent (Trial 1).
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Figure 4. Radiometrically-Enhanced May 1985 Subset Scene
(B4-B7.B2)
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Figure 5. Radiometrically-Enhanced May 1987 Subset Scene

(B4.B7-B2)
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Figure 6. Class Map Results for Trial #8
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Note that the problem in PCS performance can be reduced by labeling the filtered features
as a separate FILTER class. An analyst could interactively focus attention on the features in
this class to determine whether they have actually changed.

Further insight into the performance of the various clustering/classification operations can
be gained by analyzing the confusion matrices found in Appendix E. The purpose of Trial
19 was to determine whether it is advisable to mask out vegetation prior to the classification
stage.

A consistent problem for the classifiers occurred when separating water from asphalt-
predominant urban features. This problem can be seen in Trial 7, where an ISOCLASS
process using 5 clusters placed all of the 49 dark road pixels (in the ground truth map) into
a water cluster. The confusion was reduced in Trial 8 by incorrectly placing 43 percent of
these dark road pixels into the water class. Since this percentage was still an unacceptable
error, the ISOCLASS process was invoked again, using a 15-cluster limit (results not
shown). Although more clusters were generated, none helped to reduce this 43 percent
error rate.

A likely source of ISOCLASS's difficulty could be in the default initial cluster
assignments. Perhaps, if the mean vectors of the training classes (particularly, for water)
were used as the initial seed points, ISOCLASS would have generated a cluster
corresponding to water features.

The performance of ISOCLASS for identifying significant changes can be artificially
improved if the definition of cartographic significant change is modified to include water. A
comparison of the Figure 7 plots for Trials 7 and 8 with Trials 17 and 18 shows quite a
drop in omission error. For example, comparing Trial 7 with 17 shows a drop in omission
error from 19.7 percent to 2.5 percent.

Although it was not demonstrated in the confusion matrices, the supervised classifiers had
another type of problem with water and asphalt-predominant urban classes. Visual
inspection of the class maps generated by these classifiers showed an obvious confusion of
the urban classes with water. Since water was not defined as a ground truth class, this
problem was not quantified in the confusion matrices.

A comparison of the confusion matrices for Trials 7 and 19 shows that 32 of the 49 Dark
Road features were incorrectly eliminated when using a different masking procedure.
Since MV = { 13, 23, 22, 33) was used to mask out vegetation, the values MV = 13, 23,
33 should be selectively eliminated from the mask to see if this problem can be isolated to a
particular MV value.
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5. CONCLUSIONS

In general, most of the pre-PCS (unfiltered) trials produced excellent omission and
commission error rates (0.4 to 1.2 percent) for the NO_CHANGE category, and very
good omission error rates (as low as 2.2 percent) for the CHANGE category. The
excellent performance in some of these trials demonstrated that the first few steps of the
methodology (up to the "Extract CD Feature Candidates" step) succeeded in extracting
almost all the change in the scene.

The high commission error rates (21to 41 percent) for CHANGE emphasized the need to
improve the subsequent classification and PSC filtering steps to eliminate false alarms. The
PCS Filter Step reduced the commission errors generated by the image differencing
process; however, it also produced an unacceptable increase in the omission errors. This
performance problem can be reduced by labeling the filtered features as a separate FILTER
class, and requiring the analyst to focus attention interactively on the features in this class to
determine whether they have actually changed.

The high omission errors introduced by the PCS Filtering were not the fault of the
approach, but rather they were due to the difficulties of conventional classifiers to
accurately discriminate between different surface material types. Considering the
discussion of Section 2.5.1, it is likely that that problems encountered in this step would be
magnified greatly in CD methods that use classification methods for identifying CHANGE,
rather than NOCHANGE. Therefore, rather than alter the PCS Filtering approach (using
classification as evidence for NO_CHANGE), efforts should be directed at improving the
conventional classifiers and clustering methods.

Both the clustering operations and classifiers had difficulty separating water from asphalt-
predominant urban features. The ISOCLASS algorithm tended to label water features as
urban features; whereas, the Bayesian algoithm tended to label urban features as water.
The Bayes confusion was not quantified in the confusion matrix results because water was
not defined as a ground truth class.

A possible reason for ISOCLASS's difficulty in finding water could be in using the default
initial cluster assignments. If the mean vectors of the training classes (particularly, for
water) were used as the initial seed points, ISOCLASS might have generated a cluster
corresponding to water features. This raises the issue of whether ISOCLASS should really
be used in an unsupervised mode. It may be more suitable to use some of the clustering
methods discussed in Section 2.4.3, such as Hybrid Search Clustering, Mixture Modeling,
or graph-theoretic clustering.

No significant difference was found between the results achieved from the standard TC
method of generating the CD mask and those obtained from the scene-derived method.

The results achieved from the parametric method of setting the mask thresholds were
somewhat better than those achieved from the nonparametric method; however, this
difference is probably not significant. Regardless, given its automation advantage and the
fact that its performance is equal to or better than the nonparametric method, the parametric
method is preferable.
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6. RECOMMENDATIONS

I. Based on this report's conclusions, two implementations of the CD methodology
should give adequate results for identifying cartographically significant change
using Landsat TM. The steps for each method, along with the degree of automation
for each step, are as follows:

Method I - Highly Automated:

1. Generate a registered pair of Standard TC Brightness/Greenness scenes (automated).

2. Subtract the Brightness/Greenness scene pair (automated).

3. By applying a parametrically derived threshold to the differenced scene pairs,
generate a CD mask with nine values representing the increase/decrease/no_change
combinations of brightness/greenness (automated).

4. Reduce the CD mask to two values representing CHANGE and NQCHANGE
(automated).

5. Stratify the most recent Landsat TM scene into CHANGE and NOCHANGE
multiband data using the two-value CD mask (automated).

6. Cluster the stratified CHANGE data using an unsupervised ISOCLASS algorithm
with approximately 10 clusters (automated).

7. Group the clusters into significant and nonsignificant change (interactive).

Method 2 - Somewhat Automated:

I. Generate a registered pair of Standard TC Brightness/Greenness scenes (automated).

2. Subtract the Brightness/Greenness scene pair (automated).

3. By applying a parametrically derived threshold to the differenced scene pairs,
generate a CD mask with nine values representing the increaseldecrease/no_change
combinations of brightnes./greenness (automated).

4. Reduce the CD mask to two values representing CHANGE and NQOCHANGE
(automated).

5. Define a set of training classes, consisting of sites that do not change between
dates, using radiometrically enhanced color images (A color combination of Bands
4-7-2: Red, Green, Blue, is recommended). The ability to flicker registered color
image pairs (before/after) on the same display is essential (interactive).

6. Stratify the most recent Landsat TM scene into CHANGE and NO_CLANGE
multiband data using the two-value CD mask (automated).

7. Classify the stratified CHANGE data using a supervised classifier with an
unknown class default (automated).

8. Stratify the older Landsat TM scene into CHANGE and NQCHANGE multiband
data using the two-value CD mask (automated).

33



9. Classify the older stratified CHANGE data using a supervised classifier with an
unknown class default; label the unknown class differently than the one
corronding to the most recent date (automated).

10 Apply the PCS filter step which reduces commission error by tagging certain
change pixels as FILTERED candidates (automated).

11 Inte'ctively eliminate FILTERED candidates that the analyst determines have
actually changed to reduce omission error (interactive).

II. These two methods should be tested for stability over a variety of scenes and dates.

III. The two methods should be compared to the performance achieved when using a
CD mask obtained from differencing untransformed scene pairs.The methods
should also be compared to the performance achieved when using a CD mask
obtained from differencing other kinds of spectrally transformed scenes pairs. The
use of characteristic vector transformations defined by linear discriminant functions
should be investigated. The use of Common Principal Component Analysis
(CPCA) should also be investigated.

IV. Although this study showed that the Scene-Derived method of generating the CD
mask offered no advantage over the standard TC method for the scene pair tested,
the use of the above two methods should be compared for other scene pairs (such
as the Oct/May images).

V. Although the parametric method for defining thresholds produced acceptable
results, further investigation into selecting an optimum threshold parameter and
determining the stability of its performance over numerous scenes should be
investigated.

V I. The effect of different initial cluster centers as input to ISOCLASS, as well as the
overall stability of this clustering method, should be determined. The performance
of ISOCLASS, when using the mean vectors of the training classes (particularly,
for water) as the initial seed points, should be compared to the default unsupervised
mode.

VII. Rather than alter the PCS Filtering approach (using classification as evidence for
NO_CHANGE) in an attempt to improve the performance of the proposed Hybrid
CD methodology, efforts should be directed at improving the conventional
classifiers and clustering methods. The use of other clustering methds to replace
ISOCLASS should be investigated. These include Hybrid Search Clustering,
Mixture Modeling, and graph-theoretic clustering, as discussed in Section 2.4.3.
Also, methods should be investigated that reduce the negative impact of mixed
pixels. Such methods would need to incorporate spatial and spectral information
alout a pixel's neighborhood. Regression-based and probablistic relaxation-based
techniques are good candidates. Accordingly, such new algorithms should be
coded for testing, and the suitable ones installed as part of the LAS software.

34



7. REFERENCES

Ball, GILand Hall, DJ. Isdaza, A Novd MrJxo DaAr A1lss and Paman aCfialion S!ifc-rd
Research Instaita Technical Repot, (NTIS AD699616) Saiford, CA. 1965.

Bow, Sing-Tze Pauern Recognitn -Apph wrs to Large Dza-Sa Prob!er. New Yrk, NY: M.farl
Dekker, Inc., 1984.

Bozgan, Hamparn. Detmibning dze Nc zer of Ctmpore'a C- ersin t.e Stardard Mu-fiariaxe
Normal Mixture Model Using Model-Selecdom Criteria Tecnical Report No. UiCIDQMIA83-1. Army
Research Office, June 1983.

Cris, E.P. and Cicone, RC. "A Physically-Based Trmsfoim of Tbem2tic Mapper Data - The"I'M
Tasseled Cap." IEEE Transactions on Geoscidece andRerote Sensing, Vol. GE-22, May 1984: pp. 256-
263.

Fluffy, Bernhard N. "Common Principal Components in k-Gronps." Jo-rzal of the Ar can Srarixical
Association, Vol. 79, Dec 1984: pp. 892-898.

Jackson, Ray. "Spectral Indices in N-Space." Remote Sensing ofEnvironment, VoL 13, 1983: pp. 409-
422.

Kauth RJ. and Tomas G.S. "The tassel cap - A graphic description of the spectral-temporal development
of agricultural crops as seen by Landsat*. Proceedingsfor the Symposium on Machine Processing of
Remotely Sensed Data, Purdue University, West Lafayette, Indiana: 1976.

Ismail, MA and Kamel M.S. "Multidimensional Data Clustering Utilizing Hybrid Search Strategies."
Pattern Recognition, VoL 22, No.1,1989: pp. 75-89.

Fukunaga K. and Koontz W.L.G. "A Nonlinear Feature Extraction Algorithm Using Distance
Transformation." IEEE Trans. Computers, VoL C-21, No. 1, 1972: pp. 56-63.

Lennington R.K., Sorensen C.T., and Heydorn R.P. "A Mixture Model Approach for Estimating Crop
Areas from Landsat Data." Remote Sensing of Environment, Vol. 14, January 1984: pp. 197-206.

Rand, Robert. Davis, Donald. and Anderson John. Mulispectral Image Maps from Landsat Thematic
Mapper Data. Fort Belvoir, VA: U.S. Army Engineer Topographic Laboratories, in publication.

Seber G.A.F. Linear Regression Analysis. New York, NY: John Wiley & Sons, 1977.

Therrien, Charles W. Decision Estimation and Classification (Section 5.7 Non-Linear Mapping). New
York, NY: John Wiley & Sons, 1989.

Urquhart, Roderick. "Graph Theoretical Clustering Based on Limited Neighborhood Sets." Pattern
Recognition, Vol. 15, No. 3, 1982: pp. 173-187.

Welsh, R. Jordan, T.R. and Ehlers M. "Comparative Evaluations of the Geodetic Accuracy and
Cartographic Potential of Landsat-4 and Landsat-5 Thematic Mapper Image Data", Photograminetric
Engineering and Remote Sensing, Vol. 51, No.9, Sept 1985: pp. 1249-1262.

"Procedure Manual for Preparation of Satellite Image Maps", Open File Report 86-19, Department of the
Interior, U. S. Geological Survey, National Mapping Division.

35



APPENDIX A - Properties of Spectral Transformations

This appendix begins by discussing msne of the general and mathematical properties of a
number of common specua transformations. Since derivations are easily found in
texbooks and community literature, they are referenced but not presented (Le. refer to
Seber for a fo-mal treatment of linear modeling of multivariate normal data' s ). The second
part of tM appendix gives a simple graphic illustration of the standard TM Tasseled Cap
BriahtnesslGreenness and the Scene-Derived BrightnesslGreenness transformations.

Linear vs. Non Linear Transformations. The transformations considered in this
study are all linear. The meaning of linear" is that each transformed pixel vector y {yi:
i=l,m) is related to the original pixel vector x {xj:j=l,n) by the linear matrix equation

v = Ax w'here the components of ffe
recan=ulzr t.nsfonnauon matix A
are taiJ: =.n j=ln)

In addition to being easy to compute, linear transformations have other desirable properties.
It can be shown that if the feature vector x is multivariate normal, then the transformd
feature vector y is multivariate normal with properties as follows

x - MVN( g,E) where J1 is thn mean vector of x,

y - MVN(Autt, AZAT) Y is thc covariancc matrix of x.
and A as defined above.

The consequence of this property for feature extraction is that a linear transformation does
not change the distributional property of the image data. If a classifier is designed to
operate on normally distributed data (such as the conventional Maximum Likelihood
Bayesian classifier), and the input image data is found to contain normally distributed class
data, it is important to retain this statistical property through the transformation, otherwise,
the classification results will be based on unsuitable assumptions, and yield poor results.
This will undoubtedly happen if the transformation is non linear.

Independent Feature Components, Often it is desirable to have independent feature
components. It can be shown that if x is MVN, then the components of x ale independent,
if, and only if, the covariance matrix E is diagonal. Since E is generally not diagonal, the
strategy is often to find the transformation matrix A, such that AXAT is diagonal.
Therefore, since y is MVN, such a transformation generates independent components. This
strategy is used in a number of linear spectral transformations to generate independent
components.

Note that this formulation of independence requires the assumption of normality. Most
probably, an underlying flaw exists in the reasoning because the assumption of multivariate
normality for the underlying population(s) is not usually true. One could use Y (estimate

of image covariance), Z, (estimate of covariance for class i), or pooled class covariances.
The definition of independence is with respect to the population represented by covariance
matrix being used (e.g. if E, is used, independence is only defined with respect to class i).

18 G.A.F. Sebcr. LinLtar Rcgression Analysis New York, NY: John Wiley & Sons, 1977.
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Reducing Correlation. One motivation for performing a spectral transformation is to
reduce the correlationlcovariance between bands. Intuitively, it would seem that the process
of differencing a set of correlated bands, followed by logical "OR" combinations of masked
correlated bands might not produce optimum results. Principal Component Analysis, also
known as the Karhunen-Loeve Transform (KLT) is directed at reducing this
correlation by performing operations on variance and covariance estimates of image data.
These techniques are frequently used to reduce the number of bands based on the premise
that small variance corresponds to little information. Therefore, transformed bands
containing low overall variance are thrown away. However, correlation does not tell the
entire story, and while such processes often work they are not reliable for feature extraction
and CD.

Correlation vs Class Separability, The degree of correlation or the amount of
variance can have little to due with rlass separability. A counterexample to show this fact is
shown below in Figure Al. This figure shows how the KLT would transform the given
data from [B1, B2] to [BI', B21. Notice that the transformed band BI' containing the
largest variance contains no information to separate the two classes, whereas the band
containing the smallest variance B2' contains all this information.

B2

B2BI'

B1

Figure Al. Class Distributions Leading to Poor Separability in KLT

The KLT, for example, is an optimal technique for minimizing the mean-square error
criteria, but it is not optimized at all for class separability, and in fact does not even contain
class covariance and variance information.

Either the Canonical Transform (CT) or the Common Principal Component Analysis
(CPCA) for k-Groups should improve class separability because each uses class covariance
information. For example, the CT maximizes interclass (between-class) variance and
minimizes intraclass (within-class) variance. The CPCA finds a Maximum Likelihood
estimate for a set of common principle axes that simultaneously diagonalizes all the class
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covariance matrices (see Flury).19 However, both the CT and CPCA are linear transforms,
and a linear mapping may not be sufficient to maximize class separability.

A nonlinear transformation method that attempts to reduce the dimensionality of a data set
while preserving class separability was proposed by Koontz and Fukunaga.20 This
method is also discussed in Therrien.2 1

Characteristic Vector transformations. Rather than find a reduced set of
transformed bands that optimize mean-square error or optimize class separability, another
approach is to find a spectral transformation that generates bands which correspond to
phys'cally-meaningful features. For example, suppose a transformation could be found
that generates an urban band, a vegetation band, and a water band; where bright pixels in
the urban band correspond to features exhibiting a large degree of urbanness quality and
dark pixels have no urbanness quality; where bright pixels in the vegetation band have a
vegetative quality, etc.

The term "characteristic vector transformation" is introduced to categorize spectral
transformations that are directed at generating such physically-meaningful bands.
Intuitively, the differencing of physically-meaningful bands for CD would seem to make
sense. For example, if the urbanness bands from two dates are subtracted, a large increase
for a pixel corresponds to a Significant increase in the urbanness of that feature and
probably corresponds to a cartographically significant change.

For this study, the use of characteristic vector transformations are emphasized for CD. In
particular, two kinds of characteristic vector techniques are considered: the standard TM
Tasseled Cap Brightness/Greenness and the Scene-Derived Brightness/Greenness
transformations.

19 Flurry, Bernhard N. "Common Principal Components in k-Groups." Journal of the American Statistical

/ssociation, Vol. 79, Dec 1984: pp. 892-898.
20 Fukunaga K. and Koontz W.L.G. "A Nonlinear Feature Extraction Algorithm Using Distance Transformation."

IEEE Trans. Computers, Vol. C-21, No. 1, 1972: pp. 56-63.
21 Therrien, Charles W. Decision Estimation and Classification (Section 5.7 Non-Linear Mapping). New York,

NY: John Wiley & Sons,1989.
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Brightness/Greenness. The differences between the standard TM Tasseled Cap
brightness/greenness and the scene-derived brightness/greenness images reside in the
transformation coefficients. Table Al lists the standard Tasseled Cap coefficients as found
in the literature22, and the scene-derived coefficients as computed in this study for the May
1987 and May 1985 scenes. Figure A2 shows a plot of the brightness coefficients for the
three transforms and a plot of the greenness coefficients. Note that large coefficients
translate to large weights for the corresponding band in the original image, and small
coefficients translate to small weights. Comparing the coefficients shows a similar trend
for all three transformations for both brightness and greenness.

Table A1 Brightness/Greenness Transformation Coefficients

Brightness Coefficients Greenness Coefficients
TC B MY87 B MY85 B TC G MY87 G MY85 G

Band 1 0.3037 0.395 0.3655 Band 1 -0.2848 -0.34 -0.3676
Band 2 0.2793 0.262 0.2511 Band 2 -0.2435 -0.189 -0.2158
Band 3 0.4743 0.4258 0.4134 Band 3 -0.5436 -0.3517 -0.3564
Band 4 0.5585 0.3477 0.3537 Band 4 0.7243 0.8277 0.80644
Band 5 0.5082 0.5929 0.6138 Band 5 0.084 0.1528 0.1573
Band 7 0.1863 0.3487 0.3614 Band 7 -0.18 -0.1287 -0.127

TC B: Standard Tasseled Cap Brightness
MY87 B: Scene Derived May 1987 Brightness
MY85 B: Scene Derived May 1985 Brightness
TC G: Standard Tasseled Cap Greenness
MY87 B: Scene Derived May 1987 Greenness
MY85 B: Scene Derived May 1985 Greenness

22 Crist, E.P. and Cicone, R.C.; "A Physically-Based Transformaton of Thematic Mapper Data -The TM Tasseled

Cap." IEEE Transactions on Geoscience and Remote Sensing, Vol. GE-22, May 1984: pp. 256-263.
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Figure A2. Plot of Standard TC and Scene Derived Brightness and
Greenness Coefficients
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APPENDIX B - Radiometric Image Enhancements

In order to view the brightness and greenness images on a display, the REAL**4 pixel
values must be converted to a data type BYTE (8-bit integers). Rather than do this through
an automatic conversion, better visual results are usually obtained if the conversion is done
interactively in separate steps.

This process can be accomplished using the program CONVERT to first convert the
REAL*4 data to INTEGER*2. At this point the images contain 16-bit positive and
negative integers. The program PIXCOUNT is then used to generate a histogram.
Breakpoints are selected from the histogram statistics which are used to define a multiple-
point linear contrast stretch. A couple ways to define the breakpoints are given in Table
B1

Table B1. Estimated Breakpoint Values for Piecewise Linear
Contrast Stretch

Method 1 Method 2 Contrast Stretch
Percent Pixels/Bin Cumulative Percentage Mapped Pixel Values

0.0% 0.0% 0
0.1% 0.5% 10
0.8% 5.0% 25
mode 50.0% 110
1.0% 95.0% 205

0.15% 99.5% 240
0.0% 100.0% 255

These breakpoints and corresponding contrast stretches are discussed in a USGS Reference
manual for producing image maps.23 According to this method, either the image's
probability distribution or cumulative distribution histogram can be used to develop a
piecewise linear contrast stretch of the pixel values. For the Probability Distribution
method, the percent of pixels per histogram bin determines the breakpoint values for the
contrast stretch. For the Cumulative Histogram method, the breakpoint values are
determined by the cumulative percentage of the total number of pixels.

Once the breakpoints for a radiometric mapping are defined, MAP is used to apply the
mapping and convert the INTEGER*2 data into BYTE data.

Note that the proposed CD methodology does not require viewing the spectrally
transformed scene pairs. However, viewing these scenes does allow those interested to
gain a better feel for what the Tasseled Cap transformation is doing. Also, a visual
inspection helps to verify that the transformation procedure was implemented correcidy.

23 "Procedure Manual for Preparation of Satellite Image Maps", Open File Report 86-19, Department of the
Interior, U. S. Geological Survey, National Mapping Division.
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APPENDIX C - Multispectral Training Classes

Mean vectors for the training classes of May 1987, May 1985, and October 1985 are listed
in Table Cl. A three dimensional spectral plot of the six training classes and the six
Thematic Mapper Bands is shown in Figure Cl. Spectral plots of the Bright Urban and
Mixed Urban classes for three dates are shown in Figure C2.Spectral plots for the
Deciduous and Coniferous Vegetation classes are shown in Figure C3.

Table C1 Mean Vectors for Training Classes

MAY 1985
fil R2~ AD ju lu2u

Bright Urban 200 110 154 117 183 107
Mixed Urban 121 52 64 59 75 43
Deciduous Vegetation 89 34 26 138 78 20
Water 82 31 27 13 6 3
Parking Lot 120 50 59 45 59 36Coniferous Vegetation 83 33 30 73 63 23

MA 198 B1 IJU R 1 4 RA 5 B7
Bright Urban 209 111 155 120 188 109
Mixed Urban 134 57 70 63 85 48
Deciduous Vegetation 91 34 29 145 82 21
Water 103 39 36 19 10 4
Parking Lot 128 50 56 42 51 31
Coniferous Vegetation 92 36 32 84 64 21

OCT 1985

Bright Urban 147 79 109 83 132 76
Mixed Urban 87 36 42 37 49 27
Deciduous Vegetation 63 23 23 66 51 14
Water 67 25 23 9 4 1
Parking Lot 100 42 50 37 49 29
Coniferous Vegetation 62 22 20 44 34 11
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Figure C1. Three-Dimensional Spectral Plot of Training Classes
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Figure C2. Spectral Plots of Bright Urban and Mixed Urban - 3 dates
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Figure C3. Spectral Plots of Deciduous and Coniferous Vegetation - 3

dates
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APPENDIX D - Combined Results for CHANGE vs. NO-CHANGE

Table D1 lists the Change/NoChange results for the 20 trials. The matrices in this table
have grouped the cartographically-significant changes ( i.e. bright urban, mixed urban,
mixed urban 2, parking lot, dark urban, and unknown) into a class called CHANGE, and
the non-significant changes (i.e. vegetation and water) into a class called NO CHANGE.
The combined (grouped) results were computed using the numerical class data in Appendix
E.

A different grouping was made during Trials 17 and 18, where the water cluster was
treated as a cartographically significant change. This grouping showed the significant
improvement in CD results over corresponding Trials 7 and 8, where all else remained the
same except for the treatment of the water cluster. The rationale behind doing this came
from both analyzing the confusion matrices (in Appendix E) and visually inspecting
various CD maps. The ISOCLASS algorithm experienced confusion separating the dark
road (ground truth) feature from its water cluster. Although the supervised algorithms did
not confuse urban areas with its water class, a visual inspection of these CD maps shows
confusion between its urban class and water features that were not included in the ground
truth map.

Each confusion matrix uses the first column to list the number of features labeled as
CHANGE in the CD map that were identified in the ground truth map as CHANGE (row
1) and NO_CHANGE (row 2). The second column lists the number of features labeled as
NOCHANGE in the CD map that were identified in the ground truth map as CHANGE
(row 1) and NOCHANGE (row 2). Using the columns in this way, the CD map's
commission errors can be computed.

An alternate way of reading the confusion matrix is to look at the first row as listing the
number of features labeled as CHANGE in the ground truth map that were labeled as
CHANGE (column 1) and NO_CHANGE (column 2) in the CD map, and the second row
as listing the number of features that were labeled as NO_CHANGE in the ground truth
map that were labeled as CHANGE (column 1) and NO_CHANGE (column 2) in the CD
map. Using the rows in this way, the CD map's omission errors can be computed.
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Table D1 Change/NoChange Results

Trial #1
Filtered Bayesian w/ Unknown - May 85 to May 87

Parametric - Standard TC

Change No Change SUM Omission Commission

Change 247 73 320 Change 22.81% 34.66%
No Change 11 17140 17271 No Change 0.76% 0.42%
SUM 378 17213

Filtered Bayesian - May 85 to May 87
Parametric - Standard TC

Change No Change SUM Omission Commission
Change 195 125 320 Change 39.06% 32.76%
No Change 2 17176 17271 No Change 0.55% 0.72%
SUM 290 17301

Trial #3
Filtered Euclidean Distance - May 85 to May 87

Parametric - Standard TC

Change No Change SUM Omission Commission
Change 265 55 320 Change 17.19% 21.13%
No Change 71 17200 17271 No Change 0.41% 0.32%
SUM 336 17255

Trial #4
Unfiltered Bayesian w/Unknown - May 85 to May 87

Parametric - Standard TC

Change No Change SUM Omission Commission
Change 313 7 320 Change 2.19% 38.02%
No Change 192 17079 17271 No Change 1.11% 0.04%
SUM 505 17086

47



Trial #5
Unfiltered Bayesian - May 85 to May 87

Parametric - Standard TC

Change No Change SUM Omission Commission
Change 313 7 320 Change 2.19% 37.52%
No Change M 17083 17271 No Change 1.09% 0.04%
SUM 501 17090

Trial #6
Unfiltered Euclidean Distance - May 1985 to May 1987

Parametric - Standard TC

Change No Change SUM Omission Commission
Change 283 37 320 Change 11.56% 27.25%
No Change 106 17165 17271 No Change 0.61% 0.22%
SUM 389 17202

Trial #7
Unfiltered ISOCLASS - May 1985 to May 1987

Parametric - Standard TC
5 change clusters

Change No Change SUM Omission Commission
Change 257 63 320 Change 19.69% 31.47%
No Change 118 17153 17271 No Change 0.68% 0.37%
SUM 375 17216

Irial #8
Unfiltered ISOCLASS - May 1985 to May 1987

Parametric - Standard TC
5 change clusters combined from 10

Change No Change SUM Omission Commission
Change 292 28 320 Change 8.75% 34.82%
No Change l5 17115 17271 No Change 0.90% 0.16%
SUM 448 17143
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Filtered ISOCLASS - May 1985 to Mfay 1987
Nonparametric - Standard TC

Change No Ch=ge SUM Coz mso-
Change 232 S8 320 Chnnge 27-50% 28.83%
No Change 2- 17177 17271 No Chnge 0-54% 0.51%
SUM 326 17265

Unfiltered Bayesian w/Unknown - May 85 to May 87
Nonparametric - Standard TC

Change No Change SUM Omission Commission
Change 309 11 320 Change 3.44% 40.00%
No Change 2i. 17065 17271 No Chage 1.19% 0.06%
SUM 515 17076

Unfiltered Bayesian - May 85 to May 87
Nonparametric - Standard TC

Change No Change SU.% Omission Commission
Change 309 11 320 Change 3.44% 40.00%
No Change 206 17065 17271 No Change 1.19% 0.06%
SUM 515 17076

Trial #12
Unfiltered Euclidean Distance - May 85 to May 87

Nonparametric - Standard TC

Chanp No Change SUM Omission Commission
Change 279 41 320 Change 12.81% 27.53%
No Change 106 17165 17271 No Change 0.61% 0.24%
SUM 385 17206
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I
I

Unfiltered Bayesian w/ Unknown - Oct 85 to May 87
Parametric - Standard TC

Change No Change SUM Omission Commission
Change 276 44 320 Change 13.75% 35.81%
No Cazae 15-A 17117 17271 No Change 0.89% 0.26%
SUM 430 17161

Unfiltered Bayesian - Oct 85 to May 87
Parametric - Standard TC

Change No Change SUM Omission Commission
Change 276 44 320 Change 13.75% 35.81%
No Change 154 17117 17271 No Change 0.89% 0.26%
SUM 430 17161

' TliaLI1
Unfiltered Bayesian wi Unknown - May 85 to May 87

Parametric - Scene Derived TC

Change No Change SUM Omission Commission
Change 311 9 320 Change 2.81% 40.65%
No Change 213 17058 17271 No Change 1.23% 0.05%
SUM 524 17067

Trial #16
Unfiltered Bayesian - May 85 to May 87

Parametric - Scene Derived TC

Change No Change SUM Omission Commission
Change 311 9 320 Change 2.81% 40.19%
No Change 209 17062 17271 No Change 1.21% 0.05%
SUM 520 17071
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Tria #17
Unfiltered ISOCLASS - May 1985 to May 1987

Parametric - Standard TC
5 change dusters

Water Included in Change Class of Trial #7

Change No Change SUJM Omission Commission
Change 312 8 320 Change 2.50% 34-32%
No Change 1I 17108 17271 No Change 0.94% 0.05%
SUM 475 17116

Tial # 1l
Unfiltered ISOCLASS - May 1985 to May 1987

Parametric - Standard TC
5 change clusters combined from 10
Water Included in Change Class of Trial 8

Change No Change SUM Omission Commission
Change 313 7 320 Change 2.19% 38.75%
No Change 198 17073 17271 No Chanzge 1.15% 0.04%
SUM 511 17080

Unfiltered ISOCLASS - May 85 to May 87
Parametric -Standard TC

Vegetation Masked

Change No Change SUM Omission Commission
Change 267 53 320 Change 16.56% 36.28%
No Change 2 17119 17271 No Change 0.88% 0.31%
SUM 419 17172

Troal #20
Unfiltered ISOCLASS - May 85 to May 87

Parametric - Standard TC
Vegetation Masked

4 clusters combined from 10

Change No Change SUM Omission Commission
Change 281 39 320 Change 12.19% 36.85%
No Change 1_64 17107 17271 No Change 0.95% 0.23%
SUM 445 17146
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APPENDIX E - Confusion Matrix Class Results

Table El lists the confusion matrix results for the 20 trials with a breakdown into individual
classes. These results were used to compute combined class results and
commission/omission errors listed in Appendix D. The columns represent the change map
features and the rows represent the Ground Truth Map features.

Reading down a column, the numbers for ground truth features (Bright Urban, Mixed
Urban, Dark Road, and No Change) assigned to a particular change map category are
listed. Commission errors can be computed for the various change map categories as the
total number of incorrect ground truth features assigned to a particular change map category
divided by the total nunber of features assigned to that category. For example, the
commission error for "Mixed Urban" of Trial #1 is
CE(Mixed Urban) = (19+ 92)/233 = 48%. Note that some of the change map categories
do not have a corresponding ground truth category;, therefore, commission errors for such
classes do not make sense and cannot be computed.

Reading across a row, the numbers for Change Map features assigned to a particular
ground truth feature are listed. Omission errors can be computed for the various ground
truth features as the total number of incorrect change map features assigned to a particular
ground truth category divided by the total number of features assigned to that ground
category. As an example, the omission error for "Mixed Urban" of Trial #1 is OE(Mixed
Urban) = (4 + 2 + 7 + 34 + 41)1210 = 42%.

Definition of Ground Truth Categories:

Bright Urban: Concrete or metal urban features such as
concrete and metal rooftops, roads and runways. Also, pure
bright soil.

Mixed Urban: A mixture of concrete and asphalt urban
features, as well as construction areas.

Dark Road: A specially-selected dark paved road near airport
in Frederick, MD.

No Change: Areas that have not changed between May 1985

and May 1987.

Definition of Change Map Features:

Bright Urban: Same as ground truth feature.

Mixed Urban: Same as ground truth feature.

Decid Veg: Deciduous Trees.

Water Class: Water class defined over sites of deep water selected for
use in computing the scene-derived Brightness/Greenness transformation.

Parking Lot: Asphalt parking lot w/cars.
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Conifer Veg: Coniferous Trees.

Water Cluster: Unsupervised cluster identified as water.
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Table El Confusion Matrix Results

Trial #1

Filtered Bayesian w/ Unknown - May 85 to May 87
Parametric - Standard TC

Bright Mixed Decid Water Parking Conifer No Filtered Unk
Urban Urban Veg Lot ! Veg Change _

Bright 17 0 0 0 0 0 0 2 42
Urban
Mixed 4 122 0 0 2 0 734 41
Urban
Dark Road 0 19 0 0 0 0 0 30 0
No 22 132 0 2 32 16911 65 15
Change I

Trial #2
Filtered Bayesian - May 85 to May 87

Parametric - Standard TC

Bright Mixed Decid Water Parking Conifer No Filtered
Urban Urban Veg Lot Veg Change

Bright 35 3 0 0 0 0 0 23
Urban
Mixed 4 151 0 0 2 0 7 46
Urban
Dark Road 0 0 0 0 0 0 0 49
No 0 93 135 0 2 32 16911 98
Change

Trial #3
Filtered Euclidean Distance - May 85 to May 87

Parametric - Standard TC

Bright Mixed Decid Water Parking Conifer No Filtered
Urban Urban Veg Lot Veg Change

Bright 56 0 0 0 0 0 5
Urban 0

Mixed 24 164 0 0 1 1 7 13
Urban
Dark Road 0 9 0 0 11 29 0 0

No 1 64 134 3 6 45 16911 107
Change
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Trial #4
Unfiltered Bayesian w/Unknown - May 85 to May 87

Parametric - Standard TC

Bright Mixed Decid Water Parking Conifer No Unk
Urban Urban Veg Lot Veg Change

Bright 17 2 0 0 0 0 0 42
Urban
Mixed 4 155 0 0 3 0 7 41
Urban I I I
Dark Road 0 49 0 0 0 0 0 0
No 26 149 132 0 2 36 16911 15
Change

Trial #5
Unfiltered Bayesian - May 85 to May 87

Parametric - Standard TC

Bright Mixed Decid Water Parking Conifer No
Urban Urban Veg Lot Veg Change

Bright 35 26 0 0 0 0 0
Urban
Mixed 4 196 0 0 3 0 7
Urban I
Dark Road 0 49 0 0 0 0 0

No 28 158 135 0 2 37 16911
Change

Trial #6
Unfiltered Euclidean Distance - May 1985 to May 1987

Parametric - Standard TC

Bright Mixed Decid Water Parking Conifer No
Urban Urban Veg Lot Veg Change

Bright 61 0 0 0 0 0 0
Urban
Mixed 24 176 0 0 2 1 7
Urban
Dark Road 0 9 0 0 11 29 0

No 30 70 206 3 6 45 16911
Change
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Trial #7
Unfiltered ISOCLASS - May 1985 to May 1987

Parametric - Standard TC
5 change clusters

Bright Mixed Mixed Veg Water No
Urban Urban Urban2 Change

Bright 61 0 0 0 0 0
Urban
Mixed 28 40 128 1 6 7
Urban
Dark Road 0 0 0 0 49 0

No 31 50 37 197 45 16911
Change

Trial #8
Unfiltered ISOCLASS - May 1985 to May 1987

Parametric - Standard TC
5 change clusters combined from 10

Bright Mixed Dark Veg Water No
Urban Urban Urban Change

Bright 59 2 0 0 0 0
Urban
Mixed 5 189 9 0 0 7
Urban I I
Dark Road 0 4 24 0 21 0

No 28 124 4 162 42 16911
Change

Trial #9
Filtered ISOCLASS - May 1985 to May 1987

Nonparametric - Standard TC

Bright Mixed Mixed Veg Water No
Urban Urban Urban2 Change

Bright 39 0 0 0 0 22
Urban
Mixed 29 39 124 0 1 17
Urban
Dark Road 0 1 0 0 48 0
No 0 55 39 137 45 16995
Change
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Unfiltered Bayesian w/Unknown - May 85 to May 87
Nonparametric - Standard TC

Bright Mixed Decid Water Parking Conifer No Unk
Urban Urban Vcg ____ Lot Veg Change

Bright 17 2 0 0 0 0 0 42
Urban ____

Mixed 4 148 0 0 3 0 11 44
Urban ____

Dark Road 0 49 0 0 0 0 0 0
No 27 174 135 0 2 45 16885 3
Change

Unfiltered Bayesian - May 85 to May 87
Nonparametric - Standard TC

Bright Mixed Decid Water Parking Conifer No
Urban Urban Veg Lot Veg Change

Bright 35 26 0 0 0 0 0
Urban__ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Mixed 4 192 0 0 3 0 11
Urban_____ ____ __

Dark Road 0 49 0 0 0 0 0
No 29 175 135 0 2 45 16885
Change

Trial #12
Unfiltered Euclidean Distance - May 85 to May 87

Nonparametric - Standard TC

Bright Mixed Decid Water Parking Conifer No
______ Urban Urban Veg Lot Veg Change

Bright 61 0 0 0 0 0 0
Urban I_____________________ 

___________

Mixed 24 172 0 0 2 1 11
Urban______ _________ __

Dark Road 9 0 0 11 290
No 31 69 232 3 6 45 168
Change
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Trial #13
Unfiltered Bayesian w/ Unknown - Oct 85 to May 87

Parametric - Standard TC

Bright Mixed Decid Water Parking Conifer No Unk
Urban Urban Veg Lot Veg Change

Bright 17 2 0 0 0 0 0 42
Urban
Mixed 4 127 0 0 1 0 40 38
Urban
Dark Road 0 45 0 0 0 0 4 0
No 16 130 251 1815 3 6 15045 5
Change _ I

Trial #14

Unfiltered Bayesian - Oct 85 to May 87
Parametric - Standard TC

Bright Mixed Decid Water Parking Conifer NoUrban Urban Veg Lot Veg Change

Bright 35 26 0 0 0 0 0
Urban
Mixed 4 165 0 0 1 0 40
Urban
Dark Road 0 45 0 0 0 0 4
No 19 132 251 1815 3 6 15045
Change

Trial #15
Unfiltered Bayesian w/Unknown - May 85 to May 87

Parametric - Scene Derived TC

Bright Mixed Decid Water Parking Conifer No Unk
Urban Urban Veg Lot Veg Change

Bright 17 2 0 0 0 0 0 42
Urban
Mixed 4 153 0 0 3 0 9 41
Urban
Dark Road 0 49 0 0 0 0 0 0
No 25 169 132 0 2 50 16876 17
Change
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Unfiltered Bayesian - May 85 to May 87
Parametric - Scene Derived TC

Bright Mixed Decid Water Parking Conifer No
Urban Urban Ve Lot Veg Change

Bright 35 26 0 0 0 0 0
Urban
Mixed 4 194 0 0 3 0 9
Urban
Dark Road 0 49 0 0 0 0 0
No 27 180 135 0 2 51 16876
Change

Tial #17
Unfiltered ISOCLASS - May 1985 to May 1987

Parametric - Standard TC
5 change clusters

Water to be Include j in Change Class of Trial #7

Bright Mixed Mixed Veg Water No
Urban Urban Urban2 Change

Bright 61 0 0 0 0 0
Urban I
Mixed 28 40 128 1 6 7
Urban I
Dark Road 0 6 0 0 49 0
No I 1 50 37 197 45 16911
Change

Trial # 18
Unfiltered ISOCLASS - May 1985 to May 1987

Parametric - Standard TC
5 change clusters combined from 10

Water to be Included in Change Class of Trial 8

Bright Mixed Mixed Veg Water No
Urban Urban Urban2 Change

Bright 59 2 0 0 0 0
Urban
Mixed 5 189 9 0 0 7
Urban
Dark 0 4 24 0 21 0
Roads I
No 28 124 4 162 42 16911
Change
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Trial #19
Unfiltered ISOCLASS - May 85 to May 87

Parametric -Standard TC
Vegetation Masked

Bright Mixed Mixed Mixed Water No
Urban Urban Urban2 Urban3 Change

Bright 60 1 0 0 0 0
Urban
Mixed 15 116 25 47 0 7
Urban
Dark Road 0 0 3 0 14 32
No 30 29 85 8 43 17076
Change

Trial #20
Unfiltered ISOCLASS - May 85 to May 87

Parametric - Standard TC
Vegetation Masked

4 clusters combined from 10

Bright Mixed Dark Water No
Urban Urban Urban Change

Bright 57 4 0 0 0
Urban
Mixed 4 189 10 0 7
Urban
Dark Road 0 6 11 0 32
No 18 142 4 31 17076
Change
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